Highlights from the Lipid Analysis Literature - 2025
The following references were collected as part of a weekly literature search that reflects my (former) personal research interests. However, most mainstream lipid analytical topics are covered. Among the exceptions are "steroidal hormones", "prostanoids", "fat-soluble vitamins" and "terpenoids", although some papers in these categories may be posted. My intention is to list only those papers that exhibit novel analytical methodology as opposed to tried and tested methods, although this may appear to introduce a bias towards modern mass spectrometry techniques. Some papers in press may be listed here without the full citation, but the DOI address should still be valid, and they may be updated later. References are listed alphabetically by the first author.
New references are added at approximately monthly intervals by merging with the existing references. The most recent references of all will be found in the web page - "This month's references".
- Abe, A., Hinkovska-Galcheva, V. and Shayman, J.A. Assessment of bis(monoacylglycerol)phosphate isomers by thin layer chromatography using a modified solvent system. Biochem. Biophys. Rep., 44, 102303 (2025); DOI.
- Abreu, S., Prost, B., Solgadi, A. and Chaminade, P. Comparison of electrospray ionization-lithium adduct formation and atmospheric pressure chemical ionization for lipid analysis by normal phase liquid chromatography. J. Chromatogr. A, 1756, 466058 (2025); DOI.
- Amer, S., Jiang, L.X., Iqfath, M., Weigand, M.R. and Laskin, J. Isomer-selective mass spectrometry imaging using nanospray desorption electrospray ionization (Nano-DESI). Acc. Chem. Res., 58, 3281-3293 (2025); DOI.
- Amer, S., Unsihuay, D., Yang, M.X. and Laskin, J. Universal photosensitizer for isomer-selective lipid imaging with high molecular coverage. Anal. Chem., 97, 7071-7078 (2025); DOI.
- An, N., Mei, P.C., Li, A., Fu, X.F., Wu, X.Z., Jiang, H.P., Zhu, Q.F. and Feng, Y.Q. Derivatization-assisted acoustic ejection mass spectrometry for high-throughput FAHFA prescreening. Anal. Chem., 97, 9613-9619 (2025); DOI.
- Araújo, A.R.D., Buvry, O., Antonny, B. and Debayle, D. Separation of polar and neutral lipids from mammalian cell lines by high-performance thin-layer chromatography. J. Chromatogr. A, 1741, 465610 (2025); DOI.
- Araujo, P., Espe, M., Holen, E., Austgulen, M.H. and Iqbal, S. Cross-species comparison of resolvin E and resolvin D biosynthesis: Quantification by liquid chromatography mass spectrometry in fish and human cells exposed to alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. J. Chromatogr. B, 1264, 124729 (2025); DOI.
- Asadian, M., Croslow, S.W., Trinklein, T.J., Rubakhin, S.S., Lam, F. and Sweedler, J.V. High-throughput fluorescence-guided sequential single-cell MALDI-ICC mass spectrometry. Anal. Chem., 97, 15864-15872 (2025); DOI.
- Bale, N.J., Koenen, M., Ding, S. and Damste, J.S.S. N-glyceroyl alkylamine phosphoglycolipids dominate the lipidome of several Bacillota bacteria. System. Appl. Microbiol., 48, 126609 (2025); DOI.
- Bang, S., Shin, Y.H., Park, S.M., Deng, L., Williamson, R.T., Graham, D.B., Xavier, R.J. and Clardy, J. Unusual phospholipids from Morganella morganii linked to depression. J. Am. Chem. Soc., 147, 2998-3002 (2025); DOI.
- Barbeito, J., Mastrogiovanni, M., García-Roche, M., Mendoza, A., Rubbo, H., Carriquiry, M. and Trostchansky, A. Bovine milk as a source of nitro-conjugated linoleic acid. Int. J. Dairy Techn., 78, e13155 (2025); DOI.
- Bauer, V., Haspel, T., Beifuss, U. and Vetter, W. Methyl substituted long chain 1,4-O-bridged-1,3-dienes-novel suitable internal standards for the GC/MS analysis of furan fatty acids in fish oil. J. Am. Oil Chem. Soc., 102, 1525-1533 (2025); DOI.
- Beck, O., Barroso, M., Hermansson, S., Widen, C., Wallin, C., Nilsson-Wallmark, C. and de Bejczy, A Volumetric dried blood spots for determination of phosphatidylethanol: Validation of a liquid chromatography tandem mass spectrometry method and clinical application. Drug Test. Anal., 17, 231-237 (2025); DOI.
- Beveridge, C., Iyer, S., Randolph, C.E., Muhoberac, M., Manchanda, P., Walker, K.A., Tichy, S. and Chopra, G. CLAW-MRM: comprehensive lipidomics automation workflow for multiple reaction monitoring using large language models. Anal. Chem., 97, 19409-19418 (2025); DOI.
- Bilbao, A. The future of a myriad of accelerated biodiscoveries lies in AI-powered mass spectrometry and multiomics integration. J. Mass Spectrom., 60, e5157 (2025); DOI.
- Biricioiu, M.R., Sarbu, M., Ica, R., Vukelic, Z., Clemmer, D.E. and Zamfir, A.D. Advanced profiling and structural analysis of anencephaly gangliosides by ion mobility tandem mass spectrometry. Biochimie, 232, 91-104 (2025); DOI.
- Biricioiu, M. and others. Advanced ganglioside characterization in epileptic human hippocampus by travelling waves ion mobility tandem mass spectrometry. J. Mass Spectrom., 60, e5190 (2025); DOI.
- Boerkamp, V.J.P., Hennebelle, M., Vincken, J.P. and van Duynhoven, J.P.M. Comprehensive quantitative profiling of vegetable oil oxidation products by NMR-based oxylipidomics. Food Res. Int., 202, 115612 (2025); DOI.
- Bonney, J.R., Stratton, A.E., Guo, Y.C., Eades, C.B. and Prentice, B.M. Imaging mass spectrometry of sulfatide isomers from rat brain tissue using gas-phase charge inversion ion/ion reactions. J. Am. Soc. Mass Spectrom., 36, 119-126 (2025); DOI.
- Bookmeyer, C.H.M., Correig, F.X., Masana, L., Magni, P., Yanes, O. and Vinaixa, M. Advancing atherosclerosis research: the power of lipid imaging with MALDI-MSI. Atherosclerosis, 403, 119130 (2025); DOI.
- Böttcher, C., Gorzolka, K., Himmighofen, P. and Meiners, T. Analysis of acyl solamines in tuber periderm of cultivated and wild potatoes using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. J. Mass Spectrom., 60, e5177 (2025); DOI.
- Brash, A.R., Boeglin, W.E., Calcutt, M.W., Voehler, M., Stec, D.F. and Harris, T.M. Analysis of the thiol adduction of linoleate 9,10-dihydroxy-11E-13-ketones of the mammalian skin barrier and their cyclization to hemiketals. ACS Omega, 10, 40512-40520 (2025); DOI.
- Brockbals, L., Ueland, M., Fu, S.L. and Padula, M.P. Development and thorough evaluation of a multi-omics sample preparation workflow for comprehensive LC-MS/MS-based metabolomics, lipidomics and proteomics datasets. Talanta, 286, 127442 (2025); DOI.
- Camunas-Alberca, S.M., Taha, A.Y., Gradillas, A. and Barbas, C. Comprehensive analysis of oxidized arachidonoyl-containing glycerophosphocholines using ion mobility spectrometry-mass spectrometry. Talanta, 289, 127712 (2025); DOI.
- Cao, Y. and others. Three-layer electrospray constructing charged microdroplets for online derivatization and position identification of lipid C=C bonds. Anal. Chem., 97, 10190-10199 (2025); DOI.
- Cao, Y.P., Li, X., Wang, K., Wu, X.P., Zhang, J. and Wang, F.E. Simultaneous determination of 23 trans fatty acids in common edible oils by gas chromatography-mass spectrometry. Separations, 12, 171 (2025); DOI.
- Carlos, J., Gosset-Erard, C., Salpin, J.Y. and Poyer, S. Electron transfer dissociation of alkali-cationized phosphatidylcholines allows easy double bonds and sn-1/sn-2 localizations. Rapid Commun. Mass Spectrom., 39, e9956 (2025); DOI.
- Carpanedo, L., Wende, L.M., Goebel, B., Häfner, A.K., Chromik, M.A., Kampschulte, N., Steinhilber, D. and Schebb, N.H. Substrate-dependent incorporation of 15-lipoxygenase products in glycerophospholipids: 15-HETE and 15-HEPE in PI, 17-HDHA in plasmalogen PE, and 13-HODE in PC. J. Lipid Res., 66, 100841 (2025); DOI.
- Cavo, I., Fresnedo, O., Mosteiro, L., López, J.I., Larrinaga, G. and Fernández, J.A. Lipid imaging mass spectrometry: Towards a new molecular histology. Biochim. Biophys. Acta, Lipids, 1870, 159568 (2025); DOI.
- Chakraborti, S. and Sistla, J.C. Mycolic acid-like lipids act as substrates for Mycobacterium marinum melH. ACS Omega, 10, 41221-41232 (2025); DOI.
- Chao, H.C. and Mcluckey, S.A. Altering lipid A precursor ion types in the gas phase for in-depth structural elucidation via tandem mass spectrometry. Anal. Chem., 97, 1861-1869 (2025); DOI.
- Chen, L.X., Yu, W.J., Zhao, J.L., Jia, S.N. and Hu, L.H. Molecular imprinting of phospholipids for targeted cell and exosome recognition. Anal. Chem., 97, 9953-9960 (2025); DOI.
- Chen, T. Wang, C.F., Li, Z.G.,Yang, H., Yang, Y. and Xie, S.C. A novel protocol for extracting 3-hydroxy fatty acids from soil with microwave-assisted acid digestion. Org. Geochem., 204, 104988 (2025); DOI.
- Chen, Y. and others. Structural annotation method for locating sn- and C=C positions of lipids using liquid chromatography-electron impact excitation of ions from organics (EIEIO)-mass spectrometry. Anal. Chem., 97,4998-5007 (2025); DOI.
- Chen, Y. and others. Novel equivalent carbon number strategy for large-scale lipidomics data analysis via ultrahigh-performance liquid chromatography-orbitrap astral mass spectrometry. Anal. Chem., 97, 15550-15555 (2025); DOI.
- Cheong, B.S., He, C.C.Z., Laurenson, I., Claxton, P., Kostrzewa, M., Drobniewski, F. and Larrouy-Maumus, G. Performance of direct detection of Mycobacterium tuberculosis within Mycobacterium tuberculosis complex by routine MALDI-TOF for diagnosis using species-specific lipid fingerprint. Microbiol. Spectrum, 13, e0035625 (2025); DOI.
- Chevolleau, S. and others. Significant improvements in targeted UHPLC-ESI-MS/MS analysis of the reactive aldehydes 4-hydroxy-2(E)-nonenal and 4-hydroxy-2(E)-hexenal and application to rat serum. J. Chromatogr. B, 1265, 124747 (2025); DOI.
- Chiu, D.C., Cho, Y.T., Lin, H.N. and Baskin, J.M. Photoaffinity labeling reveals a role for the unusual triply acylated phospholipid N-acylphosphatidylethanolamine in lactate homeostasis. J. Am. Chem. Soc., 147, 33386-33394 (2025); DOI.
- Chocholousková, M. and Torta, F. Fast and comprehensive lipidomic analysis using supercritical fluid chromatography coupled with low and high resolution mass spectrometry. J. Chromatogr. A, 1745, 465742 (2025); DOI.
- Cifková, E., Neuerová, Z. and Lísa, M. Reversed-phase liquid chromatography/mass spectrometry approach for (un)targeted analysis of polar to mid-polar metabolites. Talanta, 291, 127853 (2025); DOI.
- Clarke, H.A. and others. Spatial mapping of the brain metabolome lipidome and glycome. Nature Commun., 16, 4373 (2025); DOI.
- Colin-Leitzinger, C. and others. A machine learning framework for classifying lipids in untargeted metabolomics using mass-to-charge ratios and retention times. Metabolomics, 21, 151 (2025); DOI.
- Cousineau, S.L., Sarikahya, M.H., Jurcic, K., Laviolette, S.R., Hardy, D.B. and Yeung, K.K.C. Monitoring the degree of in-source phospholipid fragmentation during MALDI mass spectrometry imaging. Anal. Chim. Acta, 1367, 344297 (2025); DOI.
- Croslow, S.W., Sirois, C.H. and Sweedler, J.V. Factorial-design-based optimization of a commercial MALDI-2 timsTOF mass spectrometer for lipid analysis. J. Am. Soc. Mass Spectrom., 36, 942-951 (2025); DOI.
- Dai, Y.C., Zhu, B.C., Yan, X.T., Xie, X.B., Zhan, Z.X. and Lv, Y. Iridium isotope tag-assisted LC-MS method for global profiling and quantification of nonvolatile serum fatty acids in nonalcoholic fatty liver mice. Anal. Chem., 97, 7055-7062 (2025); DOI.
- Damerau, A., Ahonen, E., Kortesniemi, M., Gudmundsson, H.G., Yang, B.R., Haraldsson, G.G. and Linderborg, K.M. Eicosapentaenoic Acid Is most oxidatively stable in the sn-2 position of triacylglycerols compared with sn-3 and sn-1. Eur. J. Lipid Sci. Technol., 127, e70016 (2025); DOI.
- Daramola, O., Gautam, S., Bennett, A.I., Goli, M., Guiterrez-Reyes, C.D., Wang, J.Y. and Mechref, Y. LC-MS/MS of permethylated o-glycans, free oligosaccharides, and glycosphingolipid glycans using mesoporous graphitized carbon column. J. Sep. Sci., 48, e70187 (2025); DOI.
- Das, U.S. and Fitzgerald, G.A. Chiral clues to lipid identity. J. Lipid Res., 66, 100710 (2025); DOI.
- de Bruin, C.R., de Bruijn, W.J.C., Hemelaar, M.A., Vincken, J.P. and Hennebelle, M. Separation of triacylglycerol (TAG) isomers by cyclic ion mobility mass spectrometry. Talanta, 281, 126804 (2025); DOI.
- de la Torre, R.S., Montero-Vílchez, T., García-Gavín, J. and Arias-Santiago, S. Current insights on lipidomics in dermatology: a systematic review. J. Invest. Derm., 145, 1105-1116.e6 (2025); DOI.
- Demtschuk, M. and Heinz, P. Systematic literature review of different methods for sample preparation for the quantification of coenzyme Q10 in human blood samples by HPLC. Acta Chromatogr., in press (2025); DOI.
- Deng, L.L., Zhang, D., Rorrer, L.C., Slemko, M.J. and Debord, D. Iterative SLIM (itSLIM) for ultrahigh resolution targeted ion mobility analysis. J. Am. Soc. Mass Spectrom., 36, 2578-2585 (2025); DOI.
- Dhakal, S., Nalder, T.D., Marshall, S.N. and Barrow, C.J. Analytical approaches to the rapid characterisation of marine glycolipids in bioproduct discovery. Marine Drugs, 23, 352 (2025); DOI.
- Ding, Q., Tian, X.Y., Wu, W.S., Yu, F.J., Shao, Z.Q. and Zeng, Z. The metabolic landscape of tomato roots during arbuscular mycorrhizal symbiosis reveals lipid-related metabolic rewiring. Plant Cell Rep., 44, 230 (2025); DOI.
- Dong, L. and others. A dominant subgroup of marine Bathyarchaeia assimilates organic and inorganic carbon into unconventional membrane lipids. Nature Microbiol., 10, 2579-2590 (2025); DOI.
- dos Santos, G.F. and others. Advancing stable isotope analysis with Orbitrap-MS for fatty acid methyl esters and complex lipid matrices. J. Am. Soc. Mass Spectrom., 36, 1527-1535 (2025); DOI.
- Dou, P., Yang, H., Bao, M., Li, Y.L., Liu, X.Y., Liang, X.X., Lu, X., Fan, J.H. and Xu, G.W. Laser capture microdissection-assisted gas chromatography-triple-quadruple mass spectrometry for spatial metabolic profiling of esophageal squamous cell carcinoma. J. Pharm. Biomed. Anal., 265, 117036 (2025); DOI.
- Dressman, J.W., Bayram, M.F., Angel, P.M., Drake, R.R. and Mehta, A.S. Single-cell multiomic MALDI-MSI analysis of lipids and N-Glycans through affinity array capture. Anal. Chem., 97, 12493-12502 (2025); DOI.
- Ducatez, F. and others. Lysosphingolipid quantitation in plasma and dried-blood spots using targeted high-resolution mass spectrometry. J. Clin. Lab. Anal., 39, e25131 (2025); DOI.
- Dyall, S.C. and Plourde, M. Omega-3 polyunsaturated fatty acids in neurodegenerative disorders: Mixed designs = mixed results. Prog. Lipid Res., 100, 101356 (2025); DOI.
- Ebbini, M., Wang, Z.C., Zhang, H., Lu, K.H., Huang, P.H., Kaminsky, C.J., Puglielli, L. and Li, L.J. On-tissue chemical derivatization for mass spectrometry imaging of fatty acids with enhanced detection sensitivity. Biomolecules, 15, 366 (2025); DOI.
- Emaus, K.J., Dunbar, C.A., Caruso, J., Ruotolo, B.T., Wider, J.M. and Sanderson, T.H. Analysis of neuronal cardiolipin and monolysocardiolipin from biological samples with cyclic ion mobility mass spectrometry. Front. Physiol., 16, 1592008 (2025); DOI.
- Ersalena, V.F., Kitaoka, N. and Matsuura, H. Unveiling the presence of jasmonoyl-l-isoleucine in 3 species of moss belonging to Bryophytes. Biosci. Biotechn. Biochem., 89, 1177-1181 (2025); DOI.
- Fabian, J I. and Lehr, M. Quantitative profiling of lipid mediators in sperm cells through on-line dilution on-line polymer matrix-based solid-phase extraction liquid chromatography with mass spectrometric detection. Anal. Methods, 17, 7643-7651 (2025); DOI.
- Fahs, H.Z. and others. A new class of natural anthelmintics targeting lipid metabolism. Nature Commun., 16, 305 (2025); DOI.
- Fanti, F., Sergi, M. and Compagnone, D. LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices. J. Pharm. Biomed. Anal., 256, 116681 (2025); DOI.
- Farrow, M.A. and others. A lipid atlas of the human kidney. Sci. Adv., 11, eadu3730 (2025); DOI.
- Felippe, T.V.D. and others. High-resolution targeted mass spectrometry for comprehensive quantification of sphingolipids: clinical applications and characterization of extracellular vesicles. Anal. Biochem., 698, 115732 (2025); DOI.
- Foest, D., Franzke, J. and Brandt, S. Quasi-simultaneous identification of polar and neutral lipids in mass spectrometry by kHz switching of electrospray and plasma ionization. Anal. Chem., 97, 2011-2018 (2025); DOI.
- Fougère, L., Moreau, H., Mirande-Bret, C., Fouillen, L I. and Boutte, Y. PhosphoLIMBO: an easy and efficient protocol to separate and analyze phospholipids by HPTLC from plant material. Bio-Protocol, 15, e5434 (2025); DOI.
- Fredriksen, T.R., Holbrook, J.H., Rosas, L., Angeles-Lopez, Q.D., Mora, A.L., Rojas, M. and Hummon, A.B. Light-reactive norharmane derivatization of lipid isomers by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 97, 6001-6008 (2025); DOI.
- Freeman, L.M., Rush, J.E., Berridge, B.R., Mitchell, R.N. and Martinez-Romero, E.G. Dogs with diet-associated dilated cardiomyopathy have higher urine di-docosahexaenoyl (22:6)-bis(monoacylglycerol)phosphate, a biomarker of phospholipidosis. Am. J. Vet. Res., 86, 211 (2025); DOI.
- Fu, R.R. and others. Tracking the geometric and positional isomerization of lipid C=C bonds in the bacterial stress responses by mass spectrometry. Anal. Chem., 97, 555-564 (2025); DOI.
- Gao, X.H., Yin, T.L., Li, Y., Shi, S.F., Liu, F.L., Li, M.J., Liu, R.X., Liu, Q. and Xu, Y.L. Assessment of serum metabolism and eicosanoid profiling in pediatric asthma and bronchiolitis via liquid chromatography-mass spectrometry. Rapid Commun. Mass Spectrom., 39, e9955 (2025); DOI.
- Gao, X.Y. and Zhao, X. In-depth characterization of acylcarnitines: utilizing nitroxide radical-directed dissociation in tandem mass spectrometry. Anal. Bioanal. Chem., 417, 3327-3335 (2025); DOI.
- Gao, X.Y., Liu, .CL. and Zhao, X. Isomer-resolved characterization of acylcarnitines reveals alterations in type 2 diabetes. Anal. Chim. Acta, 1351, 343856 (2025); DOI.
- Garcia, C.J. and others. Novel insights into the human gut microbially conjugated bile acids: the new diversity of the amino acid-conjugated derivatives. J. Agric. Food Chem., 31, 19460–19473 (2025); DOI.
- Gatti, N., Greco, V., Cuzzocrea, S., Crupi, R., Gugliandolo, E. and Giuffrida, A. Time-controlled online SPE: strategic approach for N-acylethanolamines quantification in complex matrices. J. Chromatogr. A, 1763, 466449 (2025); DOI.
- Gavard, P., Gavard, A., Perquis, L., Collin, F. and Couderc, F. Recent advances in lipid analysis by capillary electromigration methods, 2019-2024. J. Chromatogr. A, 1746, 465756 (2025); DOI.
- Genva, M., Mirande-Bret, C. and Fouillen, L. A new approach to detect and semi-quantify all molecular species and classes of anionic phospholipids simultaneously in plant samples. Bio-Protocol, 15, e5282 (2025); DOI.
- Geraldo, P.A., do Nascimento, M.P., Berlande, B.M., de Souza, J.C.Q., Adriano, L.H.C. and de Oliveira, M.A.L. Investigation of fatty acids in biological fluid samples and analysis by capillary electrophoresis: state of the art and applications. Electrophoresis, 46, 524-538 (2025); DOI.
- Gish, A., Wiart, J.F., Richeval, C., Allorge, D. and Gaulier, J.M. Simultaneous analysis of four endocannabinoids and endocannabinoid congeners together with delta-9 tetrahydrocannabinol and related metabolites in dried blood spots. J. Pharm. Biomed. Anal., 265, 116991 (2025); DOI.
- Gomonit, M.M., Roman, M., Skillman, B.N., Truver, M.T. and Kronstrand, R. Quantification of phosphatidylethanol 16:0/18:1 in blood using supercritical fluid chromatography-tandem mass spectrometry. J. Anal. Toxicol., 49, 289-298 (2025); DOI.
- Gonzalez-Riano, C., León-Espinosa, G., Regalado-Reyes, M., García, A., Defelipe, J. and Barbas, C. Advanced lipidomics using UHPLC-ESI-QTOF-MS/MS reveals novel lipids in hibernating syrian hamsters. J. Chromatogr. A, 1743, 465692 (2025); DOI.
- Good, C.J., Bowman, A.P., Klein, C., Awwad, K., Buck, W.R., Yang, J.H. and Wagner, D.S. Spatial mapping of gangliosides and proteins in amyloid beta plaques at cellular resolution using mass spectrometry imaging and MALDI-IHC. J. Mass Spectrom., 60, e5161 (2025); DOI.
- Grossert, J.S. and Ramaley, L. Unified fragmentation pathways of lithiated, longer-chain acylglycerols can be identified from tandem mass spectrometry and density functional computations. J. Am. Soc. Mass Spectrom., 36, 368-378 (2025); DOI.
- Guerra, I.M.S. and others. Lipidomic profiling of red blood cells in the mitochondrial fatty acid beta-oxidation disorder MCADD reveals phospholipid and sphingolipid dysregulation. J. Proteome Res., 24, 4631-4642 (2025); DOI.
- Gukalova, B., Krims-Davis, K., Sevostjanovs, E., Leduskrasta, A., Konrade, I., Dambrova, M. and Liepinsh, E. LC-MS/MS-based simultaneous quantification of acylcarnitines, eicosapentaenoic acid, and docosahexaenoic acid: exploring potential biomarkers in human plasma. Anal. Bioanal. Chem., 417, 2193-2206 (2025); DOI.
- Guo, Y.C., Specker, J.T., Gaikwad, P.B., Miranda-Quintana, R.A. and Prentice, B.M. Characterizing the energy surfaces of competing pathways in gas-phase charge inversion ion/ion reactions involving cationized lipids and anionic diacids. J. Am. Soc. Mass Spectrom., 36, 2103-2116 (2025); DOI.
- Gusenda, C., Berlage, S., Burkhart, I., Chagot, B., Weissman, K.J., Schwalbe, H. and Grininger, M. Protocol for the purification, analysis, and handling of acyl carrier proteins from type I fatty acid and polyketide synthases. Star Protocols, 6, 103762 (2025); DOI.
- Guttorm, S.J.T., Wilson, S.R.H., Amundsen, E.K., Rootwelt, H. and Elgstoen, K.B.P. Scheduled data-dependent acquisition MS provides enhanced identification and sensitivity in clinical lipidomics. Anal. Chim. Acta, 1371, 344426 (2025); DOI.
- Hamzah, K.A., Turner, N., Nichols, D. and Ney, L.J. Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review. Mass Spectrom. Rev., 44, 513-538 (2025); DOI.
- He, F.F., Liu, G., Huang, D.Y., Wang, Z., Zhao, A.Z. and Wang, X.Y. Liquid chromatography-mass spectrometry analysis of major lipid species in Bacteroides thetaiotaomicron VPI 5482. Systems Microbiol. Bioman., 5, 409-420 (2025); DOI.
- Helms, A. and Brodbelt, J.S. Progress in characterization of lipopolysaccharides and lipid A by mass spectrometry. Mass Spectrom. Rev., in press (2025); DOI.
- Hendriks, T.F.E., Birmpili, A., de Vleeschouwer, S., Heeren, R.M.A. and Cuypers, E. Integrating rapid evaporative ionization mass spectrometry classification with matrix-assisted laser desorption ionization mass spectrometry imaging and liquid chromatography-tandem mass spectrometry to unveil glioblastoma overall survival prediction. ACS Chem. Neurosci., 16, 1021-1033 (2025); DOI.
- Hermeling, S., Plagge, J., Krautbauer, S., Ecker, J., Burkhardt, R. and Liebisch, G. Rapid quantification of murine bile acids using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 417, 687-696 (2025); DOI.
- Hoffmann, N. and others. Introduction of a lipidomics scoring system for data quality assessment. J. Lipid Res., 66, 100817 (2025); DOI.
- Homer, N.Z.M., Andrew, R. and Gilroy, D.W. Review of methodology and re-analysis of lipidomic data focusing on specialised pro-resolution lipid mediators (SPMs) in a human model of resolving inflammation. Int. J. Exp. Path., 106, e12523 (2025); DOI.
- Hondo, T., Miyake, Y. and Toyoda, M. Algorithm-driven chromatographic method for prostaglandin isomer identification via tandem mass spectrometry. J. Am. Soc. Mass Spectrom., 36, 1729-1736 (2025); DOI.
- Hose, J., Juebner, M., Thevis, M. and Andresen-Streichert, H. Assessment and cross-validation of calibration transferability between dried blood spot sampling devices for accurate quantification of phosphatidylethanol. Anal. Bioanal. Chem., 417, 3803-3811 (2025); DOI.
- Hotz, L., Zartmann, A., Noack, I., Drees, L.J., Kuschow, M.K., Heinrich, M.R., Janssen, H.G. and Hammann, S. Enzymatically formed fatty acid hydroperoxides determined through GC-MS analysis of enantiomeric excess of hydroxy fatty acids after reduction and ibuprofen derivatization. Eur. J. Lipid Sci. Technol., 127, e202400065 (2025); DOI.
- Hu, D.N., Lui, T.Y., Chen, X.F. and Chan, T.W.D. A mass spectrometric study of the role of water in the Paterno-Buchi (PB) reaction between 2-acetylpyridine and unsaturated fatty acids. J. Am. Soc. Mass Spectrom., 36, 1366-1376 (2025); DOI.
- Hu, D.N., Lui, T.Y., Chen, X.F. and Chan, T.W.D. Determination of double bond positions in unsaturated fatty acids using permanganate oxidation and tandem mass spectrometry of CuIICl+ adducted ions. Anal. Chem., 97, 7315-17323 (2025); DOI.
- Hu, T., Tang, Y., Han, F.F., Ding, X I. and An, Z.L. Development and validation of a machine learning-based retention time prediction model for glycosphingolipids in UHPLC-HRMS analysis. Microchem. J., 218, 115318 (2025); DOI.
- Huang, X.Y., Ali, A., Yachioui, D.E.I., Le Dévédec, S.E. and Hankemeier, T. Lipid dysregulation in triple negative breast cancer: Insights from mass spectrometry-based approaches. Prog. Lipid Res., 98, 101330 (2025); DOI.
- Huang, Y.F., Wang, M.X., Yang, Z.Q., Wang, X.T., Wang, X.X. and He, F. Determination of nine prostaglandins in the arachidonic acid metabolic pathway with UHPLC-QQQ-MS/MS and application to in vitro and in vivo inflammation models. Front. Pharm., 16, 1595059 (2025); DOI.
- Hynds, H.M., Carpenter, J.M. and Hines, K.M. Rapid multi-omics for bacterial identification using flow injection-ion mobility-mass spectrometry. Anal. Chem., 97, 13809-13816 (2025); DOI.
- Ica, R., Sarbu, M., Biricioiu, R., Fabris, D., Vukelic, Z. and Zamfir, A.D. Novel application of ion mobility mass spectrometry reveals complex ganglioside landscape in diffuse astrocytoma peritumoral regions. Int. J. Mol. Sci., 26, 8433 (2025); DOI.
- Idkowiak, J. and others. Best practices and tools in R and Python for statistical processing and visualization of lipidomics and metabolomics data. Nature Commun., 16, 8714 (2025); DOI.
- Iglesias-Artola, J.M. and others. Quantitative imaging of lipid transport in mammalian cells. Nature, 646, 474-482 (2025); DOI.
- Ishino, Y., Shimanaka, Y., Aoki, J. and Kono, N. Mass spectrometry-based profiling of phosphoinositide: advances, challenges, and future directions. Mol. Omics, in press (2025); DOI.
- Islam, M. and others. Method for isolation and quantification of inositol glycan produced by glycosylinositol phosphoceramide-hydrolysing phospholipase D in plants. J. Biochem., 177, 387-394 (2025); DOI.
- Jayaprakash, J., Gowda, D., Gangadhara, R.M., Jain, S., Yadav, H., Gowda, S.G.B. and Hui, S.P. Discovering novel short- and medium-chain esters of hydroxy fatty acids in human fecal samples using untargeted liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 39, e10032 (2025); DOI.
- Jia, K.M., Sun, H.L., Huynh, Q.K., Al Marzooqi, D., Du, Y.L., Zhou, Y.Y. and Zhang, W.J. Discovery of isonitrile lipopeptide chalkophores from pathogenic Mycobacteria. J. Nat. Prod., 88, 2490-2499 (2025); DOI.
- Jiang, H.H. and others. Orthogonal assessment of six extraction methods for GC-MS based short-chain fatty acid quantification in fecal samples. J. Chromatogr. A, 1757, 466132 (2025); DOI.
- Jo, J.Y., Ju, S.M., Truong, H.N.D., Jang, Y., Lee, Y.I., Lee, J.S. and Lim, J.M. Lipase-mediated oxygen-18 labeling for comparative analysis of fatty acid-derived lipids by mass spectrometry. Microchem. J., 213, 113886 (2025); DOI.
- Jokesch, P., Holzer, L., Jantscher, L., Guttzeit, S., Übelhart, R., Oskolkova, O., Bochkov, V. and Gesslbauer, B. Identification of plasma proteins binding oxidized phospholipids using pull-down proteomics and OxLDL masking assay. J. Lipid Res., 66, 100704 (2025); DOI.
- Jokesch, P., Oskolkova, O., Fedorova, M., Gesslbauer, B. and Bochkov, V. Contribution of individual phospholipase A2 enzymes to the cleavage of oxidized phospholipids in human blood plasma. J. Lipid Res., 66, 100742 (2025); DOI.
- Jorbenadze, S., Sprega, G., Chelidze, A., Sechi, B., Dallocchio, R., Chankvetadze, B., Di Marzo, V., Villano, R. and Peluso, P. First separation of commendamide enantiomers. J. Pharm. Biomed. Anal., 255, 116643 (2025); DOI.
- Kahnamoui, S., Winter, T., Lloyd, D., Halayko, A.J., Mookherjee, N., Aukema, H.M. and Pascoe, C.D. Oxylipin profiling of airway structural cells is unique and modified by relevant stimuli. J. Proteome Res., 24, 672-684 (2025); DOI.
- Kang, J.Y. and Yeo, J.D. Critical overview of mass spectrometry-based lipidomics approach for evaluating lipid oxidation in foods. Food Sci. Biotechn., 34, 837-849 (2025); DOI.
- Kato, T., Yamamoto, K., Naito, S., Yamada, K. and Mizuguchi, E. Absolute quantification of individual phospholipids in infant formula using phosphorus nuclear magnetic resonance spectroscopy. J. Oleo Sci., 74, 361-375 (2025); DOI.
- Kelso, C., Maccarone, A.T., de Kroon, A.I.P.M., Mitchell, T.W. and Renne, M.F. Temperature adaptation of yeast phospholipid molecular species at the acyl chain positional level. FEBS Letts, 599, 530-544 (2025); DOI.
- Kim, J., Mun, D.G., Ding, H.S., Forsberg, E.M., Meyer, SW.., Barsch, A., Pandey, A. and Byeon, S.K. Single cell untargeted lipidomics using liquid chromatography ion mobility-mass spectrometry. J. Proteome Res., 24, 1579-1585 (2025); DOI.
- Kim, K.S., Ko, Y.G., Yang, W.S., Kim, H.Y. and Cho, J.Y. A parallel reaction monitoring-mass spectrometric method for studying lipid biosynthesis in vitro using 13C16-palmitate as an isotope tracer. Anal. Chim. Acta, 1354, 344003 (2025); DOI.
- Kim, K.S., Lee, J.S., Han, S.S. and Cho, J.Y. Accurate determination of circulatory lipids using a combination of HILIC-MRM and RPLC-PRM. Anal. Chem., 97, 9713-9721 (2025); DOI.
- Kirschbaum, C., Bennett, JL., Robinson, CV Deep structural characterization of protein-bound lipids via native ms and ultraviolet photodissociation. Anal. Chem., 97, 19331-19339 (2025); DOI.
- Kiuchi, T., Gerbaulet, M., Möllerke, A., Harig, T., Dinter, A., Beuerle, T. and Schulz, S. Determination of methyl group positions in long-chain aliphatic methyl ethers and alcohols by gas chromatography/orbitrap mass spectrometry. Anal. Chem., 97, 17150-17157 (2025); DOI.
- Kleiboeker, B.A. and Hsu, F.F. Characterization of Micrococcus luteus lipidome containing novel lipid families by multiple stage linear ion-trap with high resolution mass spectrometry. J. Am. Soc. Mass Spectrom., 36, 2117-2125 (2025); DOI.
- Knappe, C., Jaag, S.J., Dema, T., Jaufmann, R., Buckenmaier, S., Gross, H., Grond, S. and Lämmerhofer, M. Multicolumn two-dimensional liquid chromatography screening platform for stereopeptidomics and application to antimicrobial peptide polyene and lipopeptide. Anal. Chem., 97, 14048-14057 (2025); DOI.
- Koch, J., Neumann, L., Lackner, K., Fernandez-Quintero, M.L., Watschinger, K. and Keller, M.A. Benchmarking of trapped ion mobility spectrometry in differentiating plasmalogens from other ether lipids in lipidomics experiments. Anal. Chem., 97, 10578-10587 (2025); DOI.
- Kontiza, A. and others. Single-cell lipidomics: protocol development for reliable cellular profiling using capillary sampling. Analyst, 150, 1261-1270 (2025); DOI.
- Kozakura, E., Ueno, R., Yamashita, T., Hashidate-Yoshida, T., Shindou, H., Jutanom, M., Morimoto, K. and Yamada, K. Identification of novel oxidized phospholipids that activate platelet-activating factor receptor using HPLC fractionation and comprehensive LC-MS/MS analysis. Biochem. Biophys. Res. Commun., 765, 151858 (2025); DOI.
- Kozlov, O., Lísa, M., Riecan, M. and Kuda, O. Chiral supercritical fluid chromatography-mass spectrometry with liquid chromatography fractionation for the characterization of enantiomeric composition of fatty acid esters of hydroxy fatty acids. Anal. Chim. Acta, 1345, 343735 (2025); DOI.
- Kozlov, O., Sterbová, N. and Lísa, M. Chiral supercritical fluid chromatography of monoacylglycerol and diacylglycerol enantiomers in biological samples: Adjusting selectivity via column coupling. J. Chromatogr. A, 1740, 465591 (2025); DOI.
- Kurizaki, Y., Matsuzawa, Y., Takahashi, M., Takeda, H., Hasegawa, M., Arita, M., Miyamoto, J. and Tsugawa, H. Data-independent acquisition coupled with electron-activated dissociation for in-depth structure elucidation of the fatty acid ester of hydroxy fatty acids. Anal. Chem., 97, 7861-7868 (2025); DOI.
- Lamp, L.M. and others. Computationally unmasking each fatty acyl C=C position in complex lipids by routine LC-MS/MS lipidomics. Nature Commun., 16, 7277 (2025); DOI.
- Lan, M.Y., Zhang, Y. and Chen, Y. Solving the contamination conundrum derived from coisolation of extracellular vesicles and lipoproteins: approaches for isolation and characterization. Small Methods, 9, e01606 (2025); DOI.
- Launay, Y. and others. Use of stable isotope-labeled fatty acids to measure desaturase activities with negative chemical ionization GC-MS. Chem. Phys. Lipids, 266, 105451 (2025); DOI.
- Lee, V.C.L., Nguyen, K.C.K., Zhu, L.L., White, C.A.K., Lim, Y.J., Huan, T. and Velenosi, T.J. DIATAGeR: Triacylglycerol annotation of data-independent acquisition based lipidomics. Anal. Chim. Acta, 1378, 344698 (2025); DOI.
- Lee, Y.R. and others. Comprehensive approach for sequential MALDI-MSI analysis of lipids, N-glycans, and peptides in fresh-frozen rodent brain tissues. Anal. Chem., 97, 1338-1346 (2025); DOI.
- Leegwater, H., Zhang, Z.Z., Zhang, X.B., Hankemeier, T., Harms, A.C., Zweemer, A.J.M., Le Devedec, S.E. and Kindt, A. Normalization strategies for lipidome data in cell line panels. J. Chemometrics, 39, e3636 (2025); DOI.
- Li, P.C., Sun, Z.J., Chen, X.F., Shao, Q.P. and Wu, H.Y. Mapping current research status and emerging frontiers of lipidomics: a comprehensive data-mining-based study. Metabolomics, 21, 85 (2025); DOI.
- Li, T., Luo, Y.Y., Liu, C.H., Lu, X. and Feng, B.M. Archaeal lipids: extraction, separation, and identification via natural product chemistry perspective. Int. J. Mol. Sci., 26, 3167 (2025); DOI.
- Lin, Y.H. and others. An integrated platform for high-throughput extraction and mass spectrometry-based quantification of cholesterol and sphingosine. Anal. Chem., 97, 14177-14188 (2025); DOI.
- Liu, C.Y. and others. Rapid MS-based single-cell analysis assisted by photochemical derivatization in living cell membranes reveals lipidomic patterns with located C=C bonds. Anal. Chem., 97, 18992-19000 (2025); DOI.
- Liu, H.M., Wu, T.H., He, H.B., Zhou, R.B., Zhao, J., Zhan, L.J., Hou, Z.H. and Huang, G.M. Dual desalting electrospray strategy for in-cell mass spectrometry to reveal novel sphingolipid metabolism in an epithelial-mesenchymal transition. Anal. Chem., 97, 8337-8345 (2025); DOI.
- Liu, R., Zhang, Z.H., Kyaw, A.K., Grabinska, K.A., Shah, H. and Shen, H.Y. Cellular pan-chain acyl-CoA profiling reveals SLC25A42/SLC25A16 in mitochondrial CoA import and metabolism. Nature Metab., 7, 1871-1888 (2025); DOI.
- Liu, S.J., Zhao, F.R., Zhang, Y.L., Sun, X.Y., Zhang, M.M., Hou, K. and Cao, Y.F. Determination of three metabolites of thromboxane A2 and 8-iso-prostaglandin F2α in urine by ultra performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr., 43, 148-154 (2025); DOI.
- Liu, X.G. and others. Characterization of lipid epi-metabolites/reactions as diagnostic biomarkers for idiopathic pulmonary fibrosis by Lipidepifind. Anal. Chem., 97, 24285-24294 (2025); DOI.
- Liu, Y. and others. A sensitive LC-MS/MS method for the quantification of serum epoxyeicosatrienoic and dihydroxyeicosatrienoic acids in the identification of diabetic kidney disease. Anal. Bioanal. Chem., 417 2193-2206 (2025); DOI.
- Liu, Y. and others. A genetically tractable branch of environmental Pedobacter from the phylum Bacteroidota represents a hotspot for natural product discovery. Sci. Rep., 15, 20106 (2025); DOI.
- Liu, Y.F., Lv, M.Y., Wang, Y.Y., Wei, J.C. and Chen, D. Analytical strategies for tocopherols in vegetable oils: advances in extraction and detection. Pharmaceuticals, 18, 1137 (2025); DOI.
- Liu, Y.K., Xia, Y. and Zhang, W.P. Structural lipidomics enabled by isomer-resolved tandem mass spectrometry. Anal. Chem., 97, 4275-4286 (2025); DOI.
- Londoño-Osorio, S. and others. Deep insights into microsampling technologies for global lipidomic profiling of human whole blood using high-throughput LC-MS. Microchem. J., 213, 113760 (2025); DOI.
- Lu, G.Y., Xu, S.L., Huang, P.H. and Li, L.J. Enhancing lipidomics with high-resolution ion mobility-mass spectrometry. Proteomics, in press (2025); DOI.
- Luo, J.M., Wan, Q.Q. and Chen, S.M. Chemistry-driven mass spectrometry for structural lipidomics at the C = C bond isomer level. Chin. Chem. Letts., 36, 109836 (2025); DOI.
- Ma, C.Y., Zhang, W., Jing, J.L., Wang, Z., Sheng, N., An, Z.L. and Zhang, J.L. Enalomics: A mass spectrometry-based approach for profiling, identifying, and semiquantifying enals in biological samples. Anal. Chem., 97, 1507-1516 (2025); DOI.
- Mahapatra, S., Kopf, S.H., Halamka, T., Merten, C., Drost, D.A. and Minnaard, A.J. Total synthesis of the membrane spanning tetraether lipid brGDGT Ia and elucidation of its stereochemical configuration. Chem. Eur. J., 31, e202500702 (2025); DOI.
- Maimó-Barceló, A., Pérez-Romero, K., Rodríguez, R.M., Huergo, C., Calvo, I., Fernández, J.A. and Barceló-Coblijn, G. To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics. Prog. Lipid Res., 97, 101319 (2025); DOI.
- Malarvannan, M., Sabavath, B.T.N., Gaddam, V. and Paul, D. Transformative potentials, challenges and innovative solutions of lipidomics in multiple clinical applications. Talanta, 291, 127855 (2025); DOI.
- Mannochio-Russo, H. and others. The microbiome diversifies long-to short-chain fatty acid-derived N-acyl lipids. Cell, 188, 4154-4169 (2025); DOI.
- Mao, L.W., Sun, H., Chen, H.J., Yang, Q.Z. and Xu, L. Determination of 30 bile acids in the bile of Micropterus salmoides and Ctenopharyngodon idella using ultra?high performance liquid chromatography?triple quadrupole mass spectrometry. Chin. J. Chromatogr., 43, 220-227 (2025); DOI.
- Martinez, S., Gradillas, A., Cermakova, H., Witting, M. and Barbas, C. Determining carbon-carbon double bond position of unsaturated glycerophospholipids in human plasma NIST® SRM® 1950 by electron impact excitation of ions from organics-tandem mass spectrometry (EIEIO-MS/MS). J. Pharm. Biomed. Anal., 266, 117081 (2025); DOI.
- Martins, J., Bil, A., Kovensky, J., Toumieux, S. and Laclef, S. First total synthesis of deinococcucin A, a key glycolipid found in cell membranes of extremophilic bacteria. Eur. J. Org. Chem., 28, e202400879 (2025); DOI.
- Mathewson, N.J., Okoye, N.C., Nelson, H.A., Pandya, V., Moore, C. and Johnson-Davis, K.L. Beyond the baseline: quantification of two phosphatidylethanol homologues in whole blood by LC-MS-MS and retrospective data analysis from a National Reference Laboratory. J. Anal. Toxicol., 49, 191-200 (2025); DOI.
- Matsubara, M., Ishihara, M., Tiemeyer, M. and Aoki, K. DANGO: An MS data annotation tool for glycolipidomics. BBA Adv., 7, 100161 (2025); DOI.
- Medina, J. and others. Clinical lipidomics reveals high individuality and sex specificity of circulatory lipid signatures: a prospective healthy population study. J. Lipid Res., 66, 100780 (2025); DOI.
- Menzel, J.P., Birrer, F.E., Stroka, D. and Masoodi, M. Skylite: Skyline-based lipid isomer retention time evaluation for lipidomics in metabolic dysfunction-associated steatohepatitis. Anal. Chem., 97, 8791-8800 (2025); DOI.
- Merlier, F., Octave, S., Bui, B.T.S. and Thomasset, B. Evaluation of performance and validity limits of gas chromatography electron ionisation with Orbitrap detection for fatty acid methyl ester analyses. Rapid Commun. Mass Spectrom., 39, e8609 (2025); DOI.
- Mlynarczyk, M. and others. Evaluating novel direct injection liquid chromatography-mass spectrometry method and extraction-based workflows for untargeted lipidomics of extracellular vesicles. J. Proteome Res., 24, 5412-5426 (2025); DOI.
- Molloy, K.R., Dufresne, M., Colley, M.E., Migas, L.G., Van de Plas, R. and Spraggins, J.M. High-specificity and sensitivity imaging of neutral lipids using salt-enhanced MALDI TIMS. J. Am. Soc. Mass Spectrom., 36, 2213-2221 (2025); DOI.
- Moran-Garrido, M., Camunas-Alberca, S.M., Sáiz, J., Gradillas, A., Taha, A.Y. and Barbas, C. Deeper insights into the stability of oxylipins in human plasma across multiple freeze-thaw cycles and storage conditions. J. Pharm. Biomed. Anal., 255, 116587 (2025); DOI.
- Moran-Garrido, M., Taha, A.Y., Gaudioso, A., Ledesma, M.D. and Barbas, C. Development of an oxylipin library using liquid chromatography-ion mobility quadrupole time-of-flight: application to mouse brain tissue. Anal. Chem., 97, 3643-3650 (2025); DOI.
- Mountanea, O.G., Batsika, C.S., Mantzourani, C., Kokotos, C.G. and Kokotos, G. Construction of a library of fatty acid esters of hydroxy fatty acids. Molecules, 30, 286 (2025); DOI.
- Mueller, P. and Hopfgartner, G. De novo structural elucidation of acylglycerols by supercritical fluid chromatography and collision-induced dissociation of electron-deficient precursor ions. Anal. Chem., 97, 3600-3607 (2025); DOI.
- Muhammad, N. and others. A comprehensive review of instrumentation and applications in post-column and in-source derivatization for LC-MS. Mass Spectrom. Rev., 42, 67-94 (2025); DOI.
- Naeem, Z., Yan, T.T., Bonney, J.R., Scoggins, T.R. and Prentice, B.M. Structural elucidation of phosphatidylcholines via radical-directed dissociation of [M + CuII + Anion]+ Ion types. J. Am. Soc. Mass Spectrom., 36, 2434-2444 (2025); DOI.
- Nakao, T., Yuzuriha, T. and Kakutani, H. An accurate analytical method based on gas chromatography-mass spectrometry for quantifying all oleic, linoleic, and linolenic acid isomers, including trans-form and cis-trans-mixed isomers, in food. Int. J. Mol. Sci., 208, 112443 (2025); DOI.
- Nederstigt, A.E., Sardana, S. and Baggelaar, M.P. Deciphering protein long-chain S-acylation using mass spectrometry proteomics strategies. RSC Chem. Biol., 6, 1532-1545 (2025); DOI.
- Nepachalovich, P., Bonciarelli, S., Bendoula, G.L., Desantis, J., Eleuteri, M., Thiele, C., Goracci, L. and Fedorova, M. LC-MS and high-throughput data processing solutions for lipid metabolic tracing using bioorthogonal click chemistry. Angew. Chem.-Int. Ed., 64, e202501884 (2025); DOI.
- Nguyen, A.H. and others. Intra- and inter-individual variation of the human lipidome. Trends Anal. Chem., 191, 118368 (2025); DOI.
- Nguyen, D.P.L., Le, H.T., Kim, D.H., Lee, C.W., Li, J., Lim, C.W., Kim, K.P. and Kim, T.W. Enrichment and MALDI-TOF-MS/MS analysis of phosphatidylinositol bisphosphates in brain tissue. Anal. Biochem., 698, 115749 (2025); DOI.
- Niimi, Y., Ueda, A., Akiyama, H., Shiroki, R., Greimel, P., Hirabayashi, Y., Hoshinaga, K. and Mutoh, T. Cerebrospinal fluid sphingolipid and sterol metabolite profiles of neurologically normal subjects. Mol. Cell. Biochem., in press (2025); DOI.
- Noreldeen, H.A.A Enhancing lipid identification in LC-HRMS data through machine learning-based retention time prediction. J. Chromatogr. A, 1742, 465650 (2025); DOI.
- Ntshangase, S. and others. Spatial lipidomic profiles of atherosclerotic plaques: A mass spectrometry imaging study. Talanta, 282, 126954 (2025); DOI.
- Oh, J. and others. Deep sphingolipidomic and metabolomic analyses of ceramide synthase 2 null mice reveal complex pathway-specific effects. J. Lipid Res., 66, 100832 (2025); DOI.
- Olajide, T.M., Li, T., Shu, L.D., Cao, H.H., Li, Y.Y. and Cao, W.M. Analysis of fatty acid esters of hydroxy fatty acid in human milk using chemical isotope labeling-assisted LC-MS. Food Chem., 492, 145480 (2025); DOI.
- Olajide, T.M., Zhu, Z.N., Li, T., Shu, L.D., Cao, H.H., Wang, Y., Zhao, L.M. and Cao, W.M. Profiling of FAHFAs in edible oils by chemical isotope labeling-assisted LC-MS: Impact of refining on FAHFA levels in rice bran oil. Food Res. Int., 203, 115897 (2025); DOI.
- Olfert, M., Knappe, C., Sievers-Engler, A., Masberg, B. and Lämmerhofer, M. Determination of double bond positions in unsaturated fatty acids by pre-column derivatization with dimethyl and dipyridyl disulfide followed by LC-SWATH-MS analysis. Anal. Bioanal. Chem., 417, 2753–2766 (2025); DOI.
- Oliveira, I.G.C., de Souza, I.D., de Crippa, J.A.D. and Queiroz, M.E.C. A disposable pipette extraction-UHPLC-MS/MS method based on removal of phospholipids to determine anandamide, 2-arachidonoylglycerol, cannabidiol, and ?9-tetrahydrocannabidiol in plasma samples. J. Sep. Sci., 48, e70068 (2025); DOI.
- Oliveira, M.D.A. and others. Anthelmintic potential of conjugated long-chain fatty acids isolated from the bioluminescent mushroom Neonothopanus gardneri. J. Nat. Prod., 88, 255-261 (2025); DOI.
- Palazzo, C. and others. Circulating exosomes with unique lipid signature in relapsing remitting multiple sclerosis. Front. Cell. Neurosci., 19, 1613618 (2025); DOI.
- Palyzová, A., Kulisová, M., Majtán, K., Fous, K., Kolouchová, I.J. and Rezanka, T. Precursor direct biosynthesis of odd-chain polyunsaturated fatty acids by oomycete Pythium. Food Chem., 483, 144204 (2025); DOI.
- Palyzová, A., Smrhová, T., Kapinusová, G., Skrob, Z., Uhlík, O. and Rezanka, T. Stereochemistry of phosphatidylglycerols from thermotolerant bacteria isolated thermal springs. J. Chromatogr. A, 1739, 465517 (2025); DOI.
- Panda, P., Ferreira, C.R., Cooper, B.R., Schaser, A.J. and Aryal, U.K. Multiplatform lipid analysis of the brain of aging mice by mass spectrometry. J. Proteome Res., 24, 1077-1091 (2025); DOI.
- Panday, N.K., Grooms, A.J., Acharya, S.R. and Badu-Tawiah, A.K. Plasma-microdroplet fusion for online post-column epoxidation: toward deep lipidomics on unmodified mass spectrometers. Anal. Chem., 97, 21853-21862 (2025); DOI.
- Peterse, F., Nierop, K.G.J., Bale, N.J., Feakins, S.J. and Chen, C.M. Occurrence of tetraester and mixed ether/ester-bound iso-diabolic acid membrane-spanning lipids in acidic, high-elevation mineral soils. Org. Geochem., 207, 105013 (2025); DOI.
- Pilarová, V., Plachká, K., Gazárková, T., Svec, F., Garrigues, J.C. and Nováková, L. AI-powered insights into the UniSpray ionization in supercritical fluid chromatography-mass spectrometry. J. Chromatogr. A, 1756, 466064 (2025); DOI.
- Pilecky, M., Meador, T.B. and Wassenaar, L.I. Advancements in compound-specific hydrogen stable-isotope analysis of fatty and amino acids. Trends Anal. Chem., 186, 118194 (2025); DOI.
- Prayitno, V., Lee, H.S., Kim, M.J., Kim, S.Y. and Lee, K.T. Co-elution of Cis-NMIFAs in the 18:3t region: analytical approach in trans fatty acid identification. Food Sci. Biotechn., 34, 3087-3098 (2025); DOI.
- Preindl, K., Stimpfl, T., Koellensperger, G., Dorninger, F., Berger, J. and Wiesinger, C. A fast GC-MS/MS method for the simultaneous measurement of key metabolites of peroxisomal beta-oxidation and ether lipid biosynthesis in human fibroblasts. J. Chromatogr. B, 1267, 124806 (2025); DOI.
- Pühringer, M. and others. Automated mass spectrometry-based profiling of multi-glycosylated glycosyl inositol phospho ceramides (GIPC) reveals specific series GIPC rearrangements during barley grain development and heat stress response. Plant J., 122, e70279 (2025); DOI.
- Qi, L.R., Li, X.Z., Ren, Y.C., Yang, T.X., Guan, Y., Wang, D.H. and Wang, Z. A facile workflow for sebum fatty acids and squalene identification via advanced lipidomic methodologies. Anal. Chem., 97, 9664-9674 (2025); DOI.
- Qin, Y. and others. Rapid determination of α,β-unsaturated aldehydes in vegetable oils by desorption corona beam ionization-tandem mass spectrometry based on a twin derivatization strategy. Microchem. J., 208, 112447 (2025); DOI.
- Rafal, S., Magdalena, D., Karol, M., Bartlomiej, S. and Konrad, K. Detection and accurate identification of Mycobacterium species by flow injection tandem mass spectrometry (FIA-MS/MS) analysis of mycolic acids. Sci. Rep., 15, 13118 (2025); DOI.
- Rahmania, H., Indrayanto, G., Windarsih, A., Fernando, D., Bakar, N.K.A. and Rohman, A. Standard review of the application of molecular spectroscopic and chromatographic-based methods for determination of trans fatty acids in food products. Appl. Food Res., 5, 100657 (2025); DOI.
- Ramzy, G.M., Meister, I., Rudaz, S., Boccard, J. and Nowak-Sliwinska, P. Identification of lipid species signatures in FOLFOXIRI-resistant colorectal cancer cells. Int. J. Mol. Sci., 26, 1169 (2025); DOI.
- Ranjan, A., Mthethwa, T. and Welz, P.J. Qualitative and quantitative evaluation of bacterial polyhydroxyalkanoates: A critical review of existing methodologies. Microbe, 8, 100503 (2025); DOI.
- Reinalda, L., van der Stelt, M. and van Kasteren, S.I. Lipid metabolism and immune function: chemical tools for insights into T-cell biology. Chembiochem, 26, e202400980 (2025); DOI.
- Rezanka, P., Rezanka, M., Kyselová, L. and Rezanka, T. Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics. Folia Microbiol., 70, 225-233 (2025); DOI.
- Roberts, J.L. and others. Dried blood spot microsampling: A semi-quantitative 4D-lipidomics approach using ultrahigh-performance liquid chromatography - high-resolution mass spectrometry (UHPLC - HRMS). Talanta, 287, 127677 (2025); DOI.
- Rodríguez-Sánchez, D.G. and others. Joint metabolites for avocado oil identity: fatty acid profiles and fatty alcohol esters as unique derivatives. J. Agric. Food Chem., 73, 1529-1541 (2025); DOI.
- Roma, L.P. and Santos, D.Y.A.C. WaxAlly: new software to identify acyclic lipids from gas chromatography coupled to mass spectrometry data. Quimica Nova, 48, e20250049 (2025); DOI.
- Roumain, M. and Muccioli, G.G. Development and application of an LC-MS/MS method for the combined quantification of oxysterols and bile acids. J. Lipid Res., 66, 100697 (2025); DOI.
- Rudt, E. and others. Rapid MALDI-MS/MS-based profiling of Lipid A species from gram-negative bacteria utilizing trapped ion mobility spectrometry and mzmine. Anal. Chem., 97, 7781-7788 (2025); DOI.
- Rüttler, F. and Vetter, W. A simple approach to predict device-specific peak widths in countercurrent chromatography. J. Chromatogr. A, 1746, 465803 (2025); DOI.
- Samrat, R., Salas, E., Fuchslueger, L., Schmidt, H., Gorfer, M., Schagerl, M., Eichorst, S.A. and Wanek, W. High-resolution lipidomics for decoding the soil biome: Improved lipid annotation, quantitation, and response to climate stress. Soil Biol. Biochem., 209, 109892 (2025); DOI.
- Sanni, A., Bennett, A.I., Adeniyi, M. and Mechref, Y. Dysregulated lipids in Alzheimer's disease: insights into biological pathways through LC-MS/MS analysis of human brain tissues. ACS Chem. Neurosci., 16, 3694-3712 (2025); DOI.
- Sardana, S., Trezza, A., Ianiski, F.R., Nederstigt, A.E. and Baggelaar, M.P. A mass spectrometry-based proteomics strategy to detect long-chain S-acylated peptides. Analyst, 150, 4367-4380 (2025); DOI.
- Sarkar, S. and Ghosh, R. Unravelling lipid heterogeneity: Advances in single-cell lipidomics in cellular metabolism and disease. BBA Adv., 8, 100169 (2025); DOI.
- Saunders, K.D.G. and others. Single-cell lipidomics by LC-MS interlaboratory study reveals the impact of X-ray irradiation on a pancreatic cancer cell line and its bystanders. Anal. Chem., 97, 13532-13541 (2025); DOI.
- Schebb, N.H. and others. Technical recommendations for analyzing oxylipins by liquid chromatography-mass spectrometry. Sci. Signal., 18, 678 (2025); DOI.
- Schede, H.H. and others. Unified mass imaging maps the lipidome of vertebrate development. Nature Methods, 22, 1981-1994 (2025); DOI.
- Schindler, R.L., Jin, L.W., Zivkovic, A.M., Liu, Y.Y. and Lebrilla, C.B. Region-specific quantitation of glycosphingolipids in the elderly human brain with Nanoflow MEA Chip Q/ToF mass spectrometry. Glycobiology, 35, cwaf022 (2025); DOI.
- Schmidt, L. and Garscha, U. Species-specific optimization of oxylipin ionization in LC-MS: a design of experiments approach to improve sensitivity. Anal. Bioanal. Chem., 417, 1807-1818 (2025); DOI.
- Scholz, L., Wende, L.M., Chromik, M.A., Kampschulte, N. and Schebb, N.H. Oxidative stress leads to the formation of esterified erythro- and threo-dihydroxy-fatty acids in HepG2 cells. Redox Biol., 82, 103589 (2025); DOI.
- Scholz, P. and others. Plasticity of the Arabidopsis leaf lipidome and proteome in response to pathogen infection and heat stress. Plant Physiol., 197, kiae274 (2025); DOI.
- Scoggins, T.R., Guo, Y.C., Zerebinski, P. and Prentice, B.M. Ozonolysis dissociation kinetics for the relative quantification of geometrical phosphatidylcholine isomers. Anal. Chem., 97, 2171-12179 (2025); DOI.
- Shi, H.X., Bai, H.J., Deng, H.T. and Xia, Y. Revealing acyl chain selectivity of cis-to-trans isomerase through profiling of C=C geometry and location isomers of bacterial lipids. Anal. Chem., 97, 10378-10387 (2025); DOI.
- Shi, N., Wang, Y.Y., Lv, M.Y., Xia, X.D., Li, Z.H., Chen, D., Duan, R.R. and Zhang, J.H. A simplified one-pot derivatization/magnetic solid-phase extraction with integrated pH adjustment strategy coupled with liquid chromatography-fluorescence detection for fatty aldehyde analysis. J. Chromatogr. A, 1753, 465988 (2025); DOI.
- Shi, Y.Y. and others. Key lipid reprogramming revealed in gastric signet ring cell carcinoma by spatial mass spectrometry metabolomics. J. Am. Soc. Mass Spectrom., 36, 1598-1608 (2025); DOI.
- Skotland, T., Ekroos, K., Llorente, A. and Sandvig, K. Quantitative lipid analysis of extracellular vesicle preparations: a perspective. J. Extracell. Ves., 14, e70049 (2025); DOI.
- Slijkhuis, N., Towers, M., Claude, E. and van Soest, G. MALDI versus DESI mass spectrometry imaging of lipids in atherosclerotic plaque. Rapid Commun. Mass Spectrom., 39, e9927 (2025); DOI.
- Smith, R.A., Omar, A.M., Mulani, F.A. and Zhang, Q.B. OzNOxESI: a novel mass spectrometry ion chemistry for elucidating lipid double-bond regioisomerism in complex mixtures. Anal. Chem., 97, 1879-1888 (2025); DOI.
- Sonoda, S., Itonori, S., Sugita, M., Higashino, A., Sugimoto, K., Hosomi, R. and Fukunaga, K. Structural analysis of acidic glycosphingolipids in the adductor muscle of the Japanese giant scallop (Patinopecten yessoensis). Fishes, 10, 460 (2025); DOI.
- Spangenberg, P. and others. msiFlow: automated workflows for reproducible and scalable multimodal mass spectrometry imaging and microscopy data analysis. Nature Commun., 16, 1065 (2025); DOI.
- Spanneut, L. and Devièse, T. Advances in supercritical fluid chromatography for lipid analysis and purification-A review of the past decade. J. Supercrit. Fluids, 223, 106638 (2025); DOI.
- Subramaniyan, I., Barr, B., La-Beck, N.M., Janesko, B.G., Gollahon, L. and Li, L. identifying oxysterols associated with age and diet in mice using optimized reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). J. Sep. Sci., 48, e70274 (2025); DOI.
- Sun, A.Y., Yu, C., Xing, Z.R., Hao, Y.J., Li, H.J. and Ren, Y. An ultra-performance liquid chromatography-high-resolution mass spectrometry method for comprehensive profiling and quantification of free fatty acids in edible oils. "LWT-Food Sci. Technol., 231, 118353" (2025); DOI.
- Surendran, A., Zhang, H.N., Stamenkovic, A. and Ravandi, A. Lipidomics and cardiovascular disease. Biochim. Biophys. Acta, Mol. Basis. Dis., 1871, 167806 (2025); DOI.
- Suzuki, H. and others. Fecal fatty acid-linked bile acid profiles in pediatric patients with ulcerative colitis. Clin. Chim. Acta, 566, 120060 (2025); DOI.
- Svensen, H., Olsen, G.F. and Haugen, J.E. A validated GC-FID method for determination of very long-chain polyunsaturated fatty acids (C24-C30 n-3) in triglyceride fish oils. Eur. J. Lipid Sci. Technol., 127, e70040 (2025); DOI.
- Tabata, Y. Quantitative screening of geranylgeranoic acid in selected plant-based foods using LC/MS/MS. Front. Nutr., 12, 1652270 (2025); DOI.
- Takeda, H., Okamoto, M., Takahashi, H., Buyantogtokh, B., Kishi, N., Okano, H., Kamiguchi, H. and Tsugawa, H. Dual fragmentation via collision-induced and oxygen attachment dissociations using water and its radicals for C=C position-resolved lipidomics. Commun. Chem., 8, 148 (2025); DOI.
- Tan, X., Ni, H., Li, Q. and Ma, Z.L. Systematic profile of oxylipins in myocardial infarction by liquid chromatography-tandem mass spectrometry. Rapid Commun. Mass Spectrom., 39, e9999 (2025); DOI.
- Tavis, S.L., Keller, M.J., Stai, A.J., Rush, T.A. and Hettich, R.L. LipoCLEAN: a machine learning filter to improve untargeted lipid identification confidence. Anal. Chem., 97, 255-261 (2025); DOI.
- Telle, A., Mastromatteo, G., Maiellaro, M., Sciuto, L., Bottillo, G. and Camera, E. Characterization of double bond position in free fatty acids of human sebum. J. Chromatogr. Open, 8, 100265 (2025); DOI.
- Tomiyasu, N., Izumi, Y., Heraviadeh, O., Takahashi, M. and Bamba, T. Evaluation of separation performance and quantification accuracy in lipidomics methods. J. Chromatogr. A, 1758, 466165 (2025); DOI.
- Torchi, A., Ghamgui, H. and Cherif, S. Basic strategies for monitoring lipase activity: A review. Anal. Biochem., 696, 115659 (2025); DOI.
- Trefilov, V.S., Lindin, E.Y., Monakhova, M.V., Kisil, O.V., Viryasov, M.B., Oretskaya, T.S. and Kubareva, E.A. Instrumental approaches to the detection and quantification of surfactin. Russ. J. Bioorg. Chem., 51, 465-490 (2025); DOI.
- Tsikas, D. Underlying mechanisms of chromatographic H/D, H/F, cis/trans and isomerism effects in GC-MS. Metabolites, 15, 43 (2025); DOI.
- Tsikas, D. Analysis of eicosanoids by quadrupole gas chromatography-negative ion chemical ionization-tandem mass spectrometry as pentafluorobenzyl trimethylsilyl derivatives: Naming the Murphy rearrangement. J. Chromatogr. B, 1267, 124794 (2025); DOI.
- Tsikas, D.S. and Tsikas, S.A. Collision-induced gas-phase reactions of PFB-TMS derivatives of F2-prostaglandins in quadrupole GC-NICI-MS/MS: a mini-review and a meta-analysis. Molecules, 30, 3846 (2025); DOI.
- Tu, L.R. and others. Natural brominated fatty acid-containing flavonoids bromaliphflas A-B from marine-derived Streptomyces qinglanensis 1678. Chem. Biodivers., in press (2025); DOI.
- Tyrie, L.J., Karak, M. and Cochrane, S.A. Lipid II unlocked: strategies for obtaining a major antibiotic target. Chem. Commun., 61, 17787-17809 (2025); DOI.
- Um, S., Lee, J. and Kim, SH. Efficient stereochemical analysis of hydroxy fatty acids using PGME and PAME derivatization. Anal. Chem., 97, 12947-12952 (2025); DOI.
- Umemura, Y. and others. Chemical synthesis and structural determination of the inositol glycan head of plant sphingolipid GIPC in Brassicaceae. Chem. Eur. J., 31, e01987 (2025); DOI.
- van den Bossche, T. and others. mzPeak: Designing a scalable, interoperable, and future-ready mass spectrometry data format. J. Proteome Res., 24, 5329-5335 (2025); DOI.
- van der Ham, M. and others. Profiling and semi-quantitation of urine sulfatides by UHPLC-Orbitrap-HRMS. Anal. Chim. Acta, 1350, 343824 (2025); DOI.
- van Niekerk, K. and Pott, R.W.M. The in situ production and separation of surfactin, iturin, and fengycin lipopeptides in an aqueous two-phase system. J. Surfact. Deterg., 28, 1127-1136 (2025); DOI.
- Vance, J.A., Chen, W.A., Nepachalovich, P., Knittel, C., Fedorova, M. and Devaraj, N.K. Targeted detection of phospholipid aldehydes in living cells by oxime ligation. Angew. Chem.-Int. Ed., 64, e202512578 (2025); DOI.
- Vangeenderhuysen, P. and others. Automated integration and quality assessment of chromatographic peaks in LC-MS-based metabolomics and lipidomics using TARDIS. Anal. Chem., 97, 9927-9934 (2025); DOI.
- Venturi, A., Wölk, M., Penkov, S., Cruciani, G., Fedorova, M. and Goracci, L. Towards sustainable lipidomics: computational screening and experimental validation of chloroform-free alternatives for lipid extraction. Anal. Bioanal. Chem., 417, 6451-6462 (2025); DOI.
- Vieth, R., Wittmaack, M., Gericke, B., Fricker, G. and Massing, U. Single-step, chloroform-free extraction of lysophosphatidylcholine from plasma for cancer biomarker analysis. Eur. J. Pharm. Sci., 214, 107258 (2025); DOI.
- Vo, H.G., Gonzalez-Escamilla, G., Mirzac, D., Rotaru, L., Herz, D., Groppa, S. and Bindila, L. Extended coverage of human serum glycosphingolipidome by 4D-RP-LC TIMS-PASEF unravels association with Parkinson's disease. Nature Commun., 16, 4567 (2025); DOI.
- von Gerichten, J., Saunders, K.D.G., Spick, M. and Bailey, M.J. Single-cell lipidomics: performance evaluation across four liquid chromatography mass spectrometry (LC-MS) systems. Analyst, 150, 4525-4534 (2025); DOI.
- Wang, K.J., Gao, X.J., Zhang, W., Cong, H.Y., Gao, Z.W., Shi, X.C. and Zhou, Z. A rapid, simple, and reliable quantitative method for non-cholesterol sterols based on LC-MS/MS and establishment of gender-specific reference intervals. Microchem. J., 217, 114812 (2025); DOI.
- Wang, L.Y., Derks, R.J.E., Brewster, K.A.J., Prtvar, D., Tahirovic, S., Berghoff, S.A. and Giera, M. Label-free quantitative shotgun analysis of bis(monoacylglycero)phosphate lipids. Anal. Bioanal. Chem., 417, 3665-3673 (2025); DOI.
- Wang, W.C., Wang, C.Y., Su, T.C., Lin, P.C., Chang, W.C., Chung, K.P. and Kuo, C.H. Establishment of a pseudotargeted LC-MS/MS workflow for analyzing triglycerides in biological samples. Anal. Chim. Acta, 1350, 343874 (2025); DOI.
- Wang, W.J., Liu, Z.Q. and Rochfort, S. Can fragment ion intensity be used for fatty acid sn-position determination of food phospholipids? J. Food Comp. Anal., 137, 106923 (2025); DOI.
- Wang, W.X., Myers, S.J., Ollen-Bittle, N. and Whitehead, S.N. Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis., 205, 106798 (2025); DOI.
- Wang, X.R., Yin, Y.Y., Ouyang, J. and Na, N. Progress in applications of ambient ionization mass spectrometry for lipids identification. Chin. J. Chromatogr., 43, 22-32 (2025); DOI.
- Wang, Y., Dong, R.Z., Li, X.Q., Chu, H.T., Man, Z. and Zhang, Q.H. Identification the fine structure of triacylglycerol regioisomers from localization of acyl chains by electron activated dissociation tandem mass spectrometry. Anal. Chim. Acta, 1367, 344217 (2025); DOI.
- Wei, T.T., Zhou, T.X., Zhang, S.P., Quan, Z.X. and Liu, Y. Non-targeted lipidomics analysis of characteristic milk using high-resolution mass spectrometry (UHPLC-HRMS). Foods, 14, 2068 (2025); DOI.
- Weill, P.W. and others. Age-related changes in cardiolipin profile and functional consequences of altered fatty acid supply. Biochim. Biophys. Acta, Lipids, 1870, 159687 (2025); DOI.
- Weinbinder, D.D., Manzanos, M.J., Ibargoitia, M.L. and Sopelana, P. Methylated furan fatty acids in w-3 lipid-rich dietary supplements: a complementary study using proton nuclear magnetic resonance and direct immersion solid-phase microextraction followed by gas chromatography-mass spectrometry. LWT-Food Sci. Techn., 228, 118025 (2025); DOI.
- Westbye, A.B. and others. A sterol panel for rare lipid disorders: sitosterolemia, cerebrotendinous xanthomatosis and Smith-Lemli-Opitz syndrome. J. Lipid Res., 66, 100698 (2025); DOI.
- Wiedemann, K.R., Gerbig, S., Ghezellou, P., Pilgram, A., Hermosilla, C., Taubert, A., Silva, L.M.R. and Spengler, B. Mass spectrometry imaging of lipid and metabolite distributions in cysts of Besnoitia besnoiti-infected bovine skin. J. Am. Soc. Mass Spectrom., 36, 1017-1026 (2025); DOI.
- Williams, R. and others. Metabolomics using anion-exchange chromatography mass spectrometry for the analysis of cells, tissues and biofluids. Nature Protocols, in press (2025); DOI.
- Winter, H., Johnson, D. and Jarmusch, A. Open-source system suitability: mass spectrometry query language lab (MassQLab). Rapid Commun. Mass Spectrom., 39, e10132 (2025); DOI.
- Wittenhofer, P., Ayala-Cabrera, J.F., Orell, L., Uteschil, F., Meckelmann, S.W. and Schmitz, O.J. Sterol analysis in cancer cells using atmospheric pressure ionization techniques. Anal. Bioanal. Chem., 417, 6379-6390 (2025); DOI.
- Witting, M., Salzer, L., Meyer, S.W. and Barsch, A. Phosphorylated glycosphingolipids are commonly detected in Caenorhabditis elegans lipidomes. Metabolomics, 21, 29 (2025); DOI.
- Wong, T.Y. and others. Kupyaphores-self-assembling diisocyanolipopeptide ZnII ionophores in mycobacterium tuberculosis ZnII/CuI/II homeostasis and antibacterial effects. J. Am. Chem. Soc., 147, 40652-40663 (2025); DOI.
- Wu, D., Tang, H.P., Qiu, X.Y., Song, S.Y., Chen, S.Y. and Robinson, C.V. Native MS-guided lipidomics to define endogenous lipid microenvironments of eukaryotic receptors and transporters. Nature Protocols, 20, 1-25 (2025); DOI.
- Wu, V.C., Moyal, A., Othman, A. and Zamboni, N. Optimisation of electron-induced dissociation parameters for molecular annotation of glycerides and phospholipids in fast LC-MS. Analyst, 150, 5201-5211 (2025); DOI.
- Wu, W.J., Wang, K., Liu, J.N., So, P.K., Leung, T.F., Wong, M.S. and Zhao, D.Y. A high-throughput integrated nontargeted metabolomics and lipidomics workflow using microelution enhanced matrix removal-lipid for comparative analysis of human maternal and umbilical cord blood metabolomes. Anal. Chem., 97, 2629-2638 (2025); DOI.
- Wu, X.Z. and other. One-step labeling and purification: accelerating FAHFA detection in vegetable oils via chemoselective probe-assisted LC-MS. J. Agric. Food Chem., 73, 19813-19822 (2025); DOI.
- Wu, Y. and Wang, Y. An improved metabolomics workflow enables untargeted data acquisition and targeted data analysis using liquid chromatography-mass spectrometry. J. Proteome Res., 24, 5116-5126 (2025); DOI.
- Xiao, H.M. and others. Orthogonal functional group tagging combined with computational retention time prediction for discovering furan fatty acids in plant oils. Food Chem., 492, 145413 (2025); DOI.
- Yan, T.T., Naeem, Z., Liang, Z.L., Azari, H., Reynolds, B.A. and Prentice, B.M. Spatial mapping of phosphatidylcholine sn-positional isomers using CID of divalent metal complexes in imaging mass spectrometry. Int. J. Mass Spectrom., 508, 117370 (2025); DOI.
- Yang, H., Yang, T.X., Qi, L.R., Zhang, Y., Xia, Y.H., Wang, Z. and Wang, D.H. Unusual polyunsaturated fatty acids in edible marine worms identified by covalent adduct chemical ionization mass spectrometry. Food Chem., 463, 141287 (2025); DOI.
- Yang, J.L. and others. Microseparation of lipophilic and hydrophilic metabolites for single oocyte mass spectrometry analysis. Anal. Chem., 97, 1704-1710 (2025); DOI.
- Yang, J.L. and others. On-valve μSFE-SFC-MS enables fast analysis of single oocyte lipidome. Anal. Chem., 97, 18726-18734 (2025); DOI.
- Yang, L., Wang, Q.C., Chen, W.W., Yang, J., Lin, Y. and Lubman, D.M. Trimethylaminoethyl ester derivatization and stable isotope derivatization for enhanced analysis of fatty acids in biological samples by electrospray ionization tandem mass spectrometry. J. Chromatogr. B, 1264, 124733 (2025); DOI.
- Yang, T.X., Qi, L.R., Yang, H., Xia, Y.H., Wang, Z. and Wang, D.H. Highly sensitive chemical ionization tandem mass spectrometry method for the identification of unsaturated fatty acids derivatized by dimethyl disulfide. J. Am. Soc. Mass Spectrom., 36, 1158-1166 (2025); DOI.
- Yerra, N.V., Pini, C., Cordon-Cardo, C. and Mendu, D.R. An improved and economical LLE-LC/MS method for quantifying phosphatidylethanol: Identification and separation of isotopic cross-talk in clinical alcohol testing. Clin. Biochem., 139, 110994 (2025); DOI.
- Yilmaz, A., Akyol, S., Ashrafi, N., Saiyed, N., Turkoglu, O. and Graham, S.F. Lipidomics of Huntington's Disease: A comprehensive review of current status and future directions. Metabolites, 15, 10 (2025); DOI.
- Yoon, B.H., Truong, V. and Jeong, W.S. Phytosterols: extraction methods, analytical techniques, and biological activity. Molecules, 30, 2488 (2025); DOI.
- Yoshinaga, K. and others. Analysis of fatty acid composition by gas chromatography using hydrogen or nitrogen as an alternative carrier gas to helium: a JOCS collaborative study. J. Oleo Sci., 74, 349-360 (2025); DOI.
- Young, R.S.E., Piper, A.K., McAlary, L., McKinnon, J.C., Lum, J.S., Soltwisch, J., Niehaus, M. and Ellis, S.R. Subcellular mass spectrometry imaging of lipids and nucleotides using transmission geometry ambient laser desorption and plasma ionisation. Nature Commun., 16, 9130 (2025); DOI.
- Youssef, T.N., Mikhael, A., Goodlett, D.R., Fridgen, T.D. and Banoub, J. Structural elucidation of a unique glycerophospho lipid A from phenol-phase soluble lipopolysaccharide of Vibrio anguillarum Serovar SJ-41. Rapid Commun. Mass Spectrom., 39, e10083 (2025); DOI.
- Yu, J. and Heiles, S. Structure selective fragment ions of epoxidized sphingolipids. Int. J. Mass Spectrom., 515, 117483 (2025); DOI.
- Yu, J., Alshaar, B. and Heiles, S. Comprehensive lipid structure annotation via photochemical epoxidation and mass spectrometry. Anal. Bioanal. Chem., 417, 4513-4524 (2025); DOI.
- Yuan, Z.X., Egan, J.M., Bektas, A., Tian, Q., Lyashkov, A., Ferrucci, L., Ramsden, C.E. and Moaddel, R. Qualitative and quantitative lipidomic profiling of cardiolipin, oxidized cardiolipin, and monolysocardiolipin from human skeletal muscle by UPLC-Orbitrap-MSn. Anal. Chim. Acta, 1350, 343825 (2025); DOI.
- Yue, C.L., Zhao, L.Y., Long, Z.C., Song, X.W., Yang, J.Q., Cao, Y., Zhang, Y.Y., Zhang, Y.Y. and Zhao, Z.W. Stereoselective reaction enabling simultaneous analysis of carbon-carbon double-bond configuration and the position of monounsaturated fatty acids through UHPLC-ESI-MRM-MS. Anal. Chem., 97, 3083-3090 (2025); DOI.
- Zarei, I., Babu, A.F., Koistinen, V.M., Tuomainen, M., Kårlund, A., Haikonen, R., Lehtonen, M. and Hanhineva, K. Analysis of methylated quaternary ammonium compounds using hydrophilic interaction liquid chromatography combined with mass spectrometry. Mass Spectrom. Rev., in press (2025); DOI.
- Zartmann, A., Galano, J.M. and Hammann, S. Analysis of glycerol bound ω-oxo-fatty acids as ω-dioxane-FAME-derivatives. Food Chem., 463, 141223 (2025); DOI.
- Zavolskova, M., Senko, D., Osetrova, M., Efimova, O., Stekolshchikova, E., Vladimirov, G., Nikolaev, E. and Khaitovich, P. Lipid composition diversity of the human brain white matter tracts. J. Neurochem., 169, e70042 (2025); DOI.
- Zhai, K., Dong, Z.K., Geng, B.Z., Li, Q., Liu, Z.D., Wang, D., Chen, H. and Cui, Y. Identification of biomarkers for renal cell carcinoma in plasma samples measured using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Sci. Rep., 15, 33509 (2025); DOI.
- Zhang, R. and others. Targeted detection of 76 carnitine indicators combined with a machine learning algorithm based on HPLC-MS/MS in the diagnosis of rheumatoid arthritis. Metabolites, 15, 205 (2025); DOI.
- Zhang, X.H. and Zhao, X. In-depth structural characterization of sphingoid bases via derivatization and electron-activated dissociation tandem mass spectrometry. Analyst, 150, 4381-4388 (2025); DOI.
- Zhang, Y.X., Ding, C.C., Xu, J.Y., Kong, L.F., Wang, Y., Lin, W.H. and Tie, C. A simultaneous analysis strategy of glycerophospholipids and lipid mediators based on secondary extraction scheme. Anal. Bioanal. Chem., 417, 109-117 (2025); DOI.
- Zhao, M., Chen, Z.Y., Ye, D.N., Yu, R.Q. and Yang, Q. Comprehensive lipidomic profiling of human milk from lactating women across varying lactation stages and gestational ages. Food Chem., 463, 141242 (2025); DOI.
- Zhao, Q.Z., Kalpio, M., Fabritius, M., Zhang, Y.Q. and Yang, B.R. Analysis of triacylglycerol regioisomers in plant oils using direct inlet negative ion chemical ionization tandem mass spectrometry. Food Res. Int., 202, 115710 (2025); DOI.
- Zhao, S.Y. and others. Understanding lipidomics associations and the lipoprotein-related caveats in population epidemiology. Am. J. Epidem., 194, 2800-2812 (2025); DOI.
- Zhao, X., Shi, HX., Lin, QH., Xia, Y Review: Deep lipidomic profiling enabled by the Paterno-Büchi reaction - Pinpointing C=C locations and beyond. Anal. Chim. Acta, 1376, 344456 (2025); DOI.
- Zhao, Y., Wang, X.P. and Li, P.W. Identification and nontargeted screening of phytosterol esters in oilseeds and oils based on fragmentation characteristics via ultrahigh-performance liquid chromatography high-resolution mass spectrometry. Food Frontiers, 6, 3154-3165 (2025); DOI.
- Zheng, P.Y. and others. Ultrasensitive profiling of arachidonic acid metabolites based on 5-(diisopropylamino)amylamine derivatization-ultraperformance liquid chromatography-tandem mass spectrometry. ACS Pharm. Transl. Sci., 8, 4095-4106 (2025); DOI.
- Zheng, Z.Y., Yan, W.G., Liu, W.L., Cai, Z.H., Ding, Y.J. and Ling, J. Optimized LC-MS/MS approach for trace detection of trans-4,5-epoxy-(E)-2-decenal: Advancing volatile organic compounds biomarker research in human. Microchem. J., 218, 115166 (2025); DOI.
- Zhong, X.L. and others. Development of a comprehensive computational pipeline for cardiolipin atlas in an intermittent fasting model. Chin. Chem. Letts, 36, 111027 (2025); DOI.
- Zhou, Y.X., Xu, Y.L., Hou, X.L. and Xia, D.Z. Raman analysis of lipids in cells: Current applications and future prospects. J. Pharm. Anal., 15, 101136 (2025); DOI.
- Zhou, Z.S. and others. Siegesoxylipin A-J, previously undescribed phyto-oxylipins inhibition of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci from Sigesbeckia orientalis. Phytochemistry, 231, 114355 (2025); DOI.
| © Data compiled by Bill Christie | ![]() |
|
| Updated: December 2025 | Contact/credits/disclaimer | |
