Core J Sterol Extraction and Quantitation

Jeff McDonald, Bonne Thompson 7/6/2007

Synopsis: This protocol describes the standard method for the extraction and analysis of sterols from cells and medium following a LIPID MAPS time course protocol. Cells are cultured and treated according to a LIPID MAPS protocol. Sterols are extracted via a modified Bligh-Dyer method and separated using a reverse phase binary liquid chromatography (LC) gradient. Sterols are quantitated using a MRM method with positive electrospray ionization mass spectrometry (ESI-MS) and normalized to mass of DNA.

I. Sample Preparation

This harvest and extraction protocol is optimized for cells cultured in 60 or 100mm dishes.

Reagents Required: DPBS Methanol

Chloroform 5% H₂O in Methanol

A. Cell and Medium Harvest

- 1. Remove 1 mL medium to eppendorf tube for TNFa analysis (see PP0000001004 for details).
- 2. Remove remaining medium to 15 mL polypropylene vial and store at -20°C until extraction.
- 3. Wash cells twice with 3 mL (60mm) or 5 mL (100mm) cold DPBS, aspirating DPBS.
- 4. Add 3 mL DPBS to cells using an eppendorf repeat pipettor fitted with a 50 mL combitip.
- 5. Scrape cells into the DPBS using a cell lifter.
- 6. Transfer cells and DPBS to a 16x100mm glass tube with Teflon-lined cap. Suspend well.
- 7. Remove a small aliquot of cell suspension for DNA assay (see PP0000001004 for details).
- 8. Store cell suspension and DNA aliquot at -80°C until extraction/assay.

B. Extraction of Cellular Lipids

- 1. Thaw the cell/DPBS suspension.
- 2. Add 6.6 mL CHCl₃/MeOH (1:1, *v:v*).
- 3. Add 10 µL each of surrogate standard mix 1 and surrogate standard mix 2.
- 4. Cap tubes and shake or vortex until phases are mixed.
- 5. Centrifuge at 2600 rpm (1360 rcf) for 10 minutes at 4°C.
- 6. Using a Pasteur pipette, remove organic (lower) phase to a 4 mL glass vial with Teflon-lined cap.
- 7. Dry the organic phase under N_2 with gentle heating (37°C).
- 8. Dissolve dried lipids in 400 μL of 5% H₂O in MeOH.
- 9. Transfer dissolved lipids to an autosampler vial with 500 μ L insert containing 10 μ L internal standard mix.

C. Extraction of Medium Lipids

- 1. Thaw medium. Transfer 5 mL (100mm dish) to 16x150mm or 4 mL (60mm dish) to 16x125mm glass tube with Teflon-lined cap.
- 2. Add 13 mL (100mm) or 10 mL (60mm) of CHCl₃/MeOH (1:1, v:v).
- 3. Add 10 µL each of surrogate standard mix 1 and surrogate standard mix 2.
- 4. Cap tubes and shake or vortex until phases are mixed.
- 5. Centrifuge at 2600 rpm (1360 rcf) for 10 minutes at 4°C.
- 6. Using a Pasteur pipette, remove organic (lower) phase to an 8 mL glass vial with Teflon-lined cap.
- 7. Dry the organic phase under N_2 with gentle heating (37°C).
- 8. Dissolve dried lipids in 400 μL of 5% H₂O in MeOH.
- Transfer dissolved lipids to an autosampler vial with 500 μL insert containing 10 μL internal standard mix.

II. Positive ESI Liquid Chromatography Mass Spectrometry (ESI- LC/MS)

The LC/MS protocol outlined below is for the analysis of sterols in cultured cell and medium extracts (part I). Sterols are resolved by reverse-phase HPLC using a binary solvent system and gradient elution is performed on a C18 RP-HPLC column. The HPLC is coupled to a triple quadrupole MS with an ESI source. The MS is operated in multiple reaction monitoring (MRM) mode with transitions optimized for each sterol of interest. Sterols are quantified using the internal standards, surrogate, and relative response factor (RRF) of each sterol of interest.

A. Solutions

1. Mobile Phase A

Methanol with 5mM ammonium acetate (sparged with Helium for 5 minutes)

2 Mobile Phase R

15% High Purity water in methanol with 5mM ammonium acetate (sparged with Helium for 5 minutes)

3. Surrogates

Two deuterated surrogates, 10 µL each, are added to cells before lipid extraction:

Table 1: Surrogate composition

SURROGATE MIX 1	SOURCE	CONCENTRATION [PPM]
27-Hydroxycholesterol (D ₅) in	Avanti Polar Lipids	3.992
МеОН		
24,25-Epoxycholesterol (D ₆) in	Avanti Polar Lipids	3.824
МеОН		
7α -Hydroxycholesterol (D ₇) in	Avanti Polar Lipids	4.055
МеОН		
7-Oxocholesterol (D ₇) in MeOH	Avanti Polar Lipids	4.025
4β-Hydroxycholesterol (D ₇) in	Avanti Polar Lipids	1.948
МеОН		
SURROGATE MIX 2		
Cholesterol (D ₇) in MeOH	Avanti Polar Lipids	156.4
Desmosterol (D ₆) in MeOH	Avanti Polar Lipids	72.0

4. Internal Standard

6α-Hydroxycholesterol (D₆) 3.921 ppm from Avanti Polar Lipids

B. Compounds of interest

We are monitoring the following compounds via Selected Reaction Monitoring

Table 2: Compounds monitored via Selected Reaction Monitoring

COMPOUND	MRM PAIR
22r-Hydroxycholesterol	420/385
24-Hydroxycholesterol	420/385
25-Hydroxycholesterol	420/367
26-Hydroxycholesterol	420/385
24,25-Epoxycholesterol	418/383
7α-Hydroxycholesterol	385/367
7-Ketocholesterol	401/383
5/6β Epoxycholesterol	420/385
5/6α Epoxycholesterol	420/385
4β-Hydroxycholesterol	420/385
Zymosterol	385/367
Desmosterol	402/367
7-Dehydrocholesterol	385/367
3keto cholestene	385/367

T. d 1	40.4/2.60
Lathosterol Cholesterol	404/369 404/369
Lanosterol	444/409
Cholestanol	404/387
24-Dihydrolanosterol	429/411
3,16dioxo cholestenoic acid	429/411
TriOH cholesterol	401/383
4-chol-27acid-3one	415/397
4-chol-22OH-3one	401/383
4-chol-24OH-3one	401/383
4-chol-25OH-3one	401/383
4-chol-2OH-3one	401/383
20-Hydroxycholesterol	385/367
4-chol-26(25r)OH-3one	401/383
4-chol-26(25s)OH-3one	401/383
3keto,26cholestene	401/383
8(14) cholesten 3β,15α diol	385/367
3β,15α cholestanol	422/369
8(14) cholesten 3βOH 15one	401/383
cholestan 3oh 15one	403/385
7α hydroxycholestenone	401/383
8(14) cholesten 3β,15β diol	385/367
3β,15β cholestanol	422/369
7ketocholestanone	401/383
dihydroxyketocholesterol	401/383
19-Hydroxycholesterol	420/385
4,6 Chlestadiene -3-one	383/365
Lathosterone 5-chol-3-one	385/367
cycloartenol	385/367 444/409
Bsitosterol	432/397
Bsitosterone	413/413
3,16dioxo cholestenoic acid	429/411
TriOH cholesterol	401/383
4-chol-27acid-3one	415/397
4-chol-22OH-3one	401/383
4-chol-24OH-3one	401/383
4-chol-25OH-3one	401/383
4-chol-2OH-3one	401/383
20-Hydroxycholesterol	385/367
4-chol-26(25r)OH-3one	401/383
4-chol-26(25s)OH-3one	401/383
3keto,26cholestene	401/383
8(14) cholesten 3β,15α diol	385/367
3β,15α cholestanol	422/369
8(14) cholesten 3OH 15one	401/383
cholestan 3oh 15one	403/385
7α hydroxycholestenone	401/383
8(14) cholesten 3β,15β diol	385/367
3β,15β cholestanol	422/369
7ketocholestanone	401/383
dihydroxy ketocholesterol	401/383
19-Hydroxycholesterol	420/385
4,6 Chlestadiene -3-one	383/365
Lathosterone	385/367
5-chol-3-one	385/367 444/409
cycloartenol	444/407

Bsitosterol	432/397
Bsitosterone	413/413
DEUTERATED COMPOUND	MRM Pair
7β-Oxocholesterol (D ₇)	408/390
7β-Hydroxycholesterol (D ₇)	391/373
4β-Hydroxycholesterol (D ₇)	426/391
7α-Hydroxycholesterol (D ₇)	391/373
25-Hydroxycholesterol (D ₃)	423/370
27- Hydroxycholesterol (D ₅)	425/390
24,25 Epoxycholesterol (D ₆)	424/389
Cholesterol (D ₇)	411/376
Desmosterol (D ₆)	408/373

C. Instrumentation

1. Column Information

Company: Phenomenex Packing: Reverse Phase C18

Particle Size: 3µm Diameter: 2mm Length: 250mm

This column is maintained at 30°C.

2. HPLC conditions

Total Flow: 0.25 mL/min

Table 3: HPLC Gradient

TIME (MIN)	% MOBILE PHASE B
0	100
2	100
15	0
25	0
25.5	100
30	100

3. API 4000 Q Trap Conditions

CUR: 15.00 CAD: Medium IS: 5500.00 GS1: 60.00 GS2: 20.00

DP: Variable Depending on MRM pair (45.00-120.00)

EP: 10.00

CE: Variable Depending on MRM pair (10.00-65.00)

CXP: 10.00