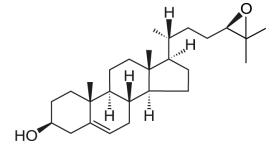


LIPID MAPS Lipidomics Workshop

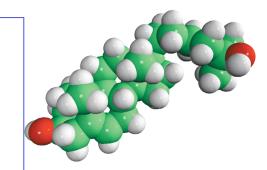

April 18, 2009

www.lipidmaps.org

Sterols

Jeff McDonald

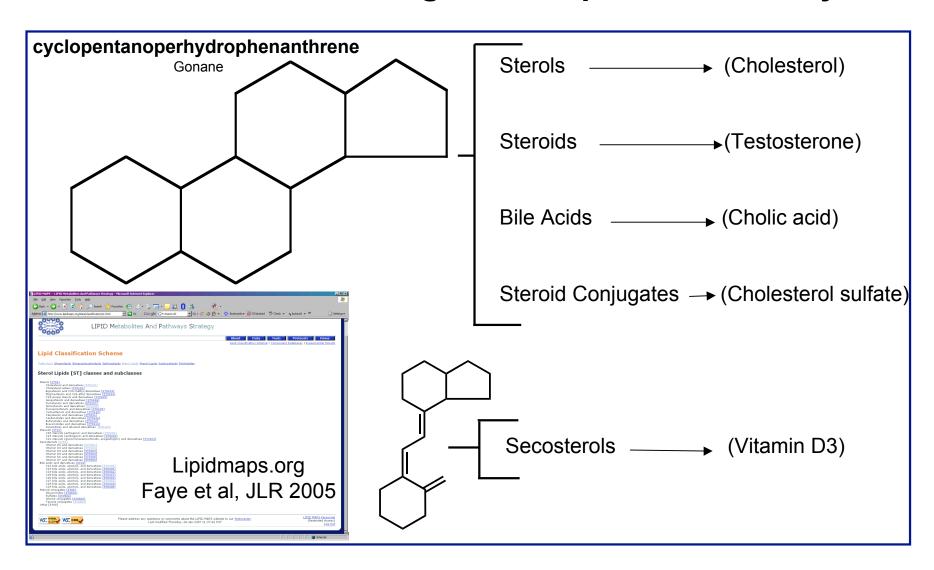
Molecular Genetics
The University of Texas Southwestern Medical Center
At Dallas

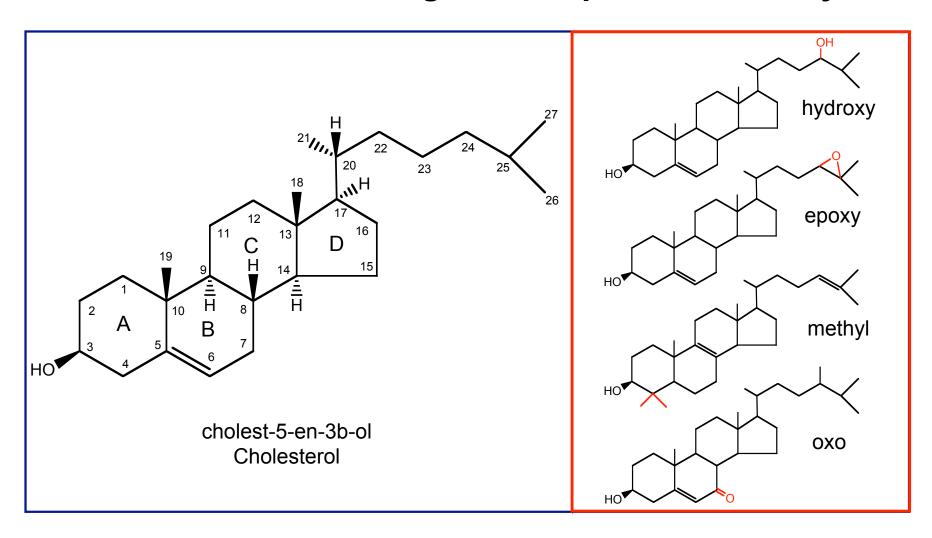


Other LIPID MAPS Sterol Core members:

David Russell

Bonne Thompson, David Bauman, Holly Lincoln

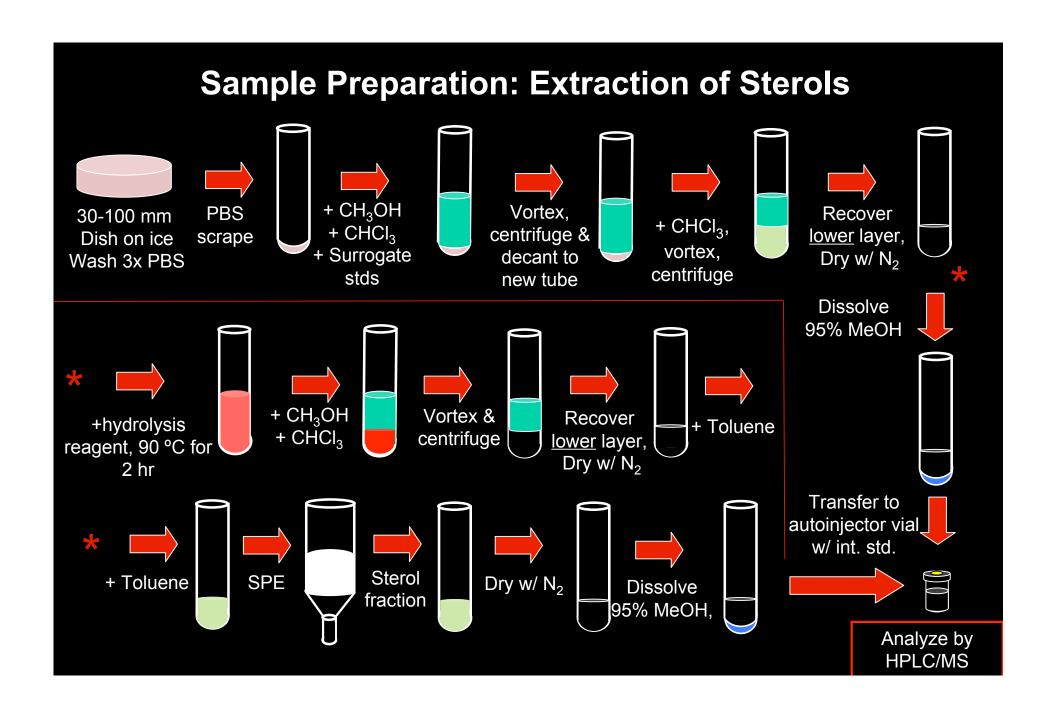

NIH GM-069338


Outline

- A. Brief introduction to the lipid class: nomenclature & range of compounds to analyze
- B. Sample preparation: solvents, chromatography, recovery,
- C. Compound identification: HPLC MS/MS (MRM)
- D. Quantitation: Internal standards
- E. Alternatives and improvements: New directions with old ideas
- G. Remaining challenges and opportunities
- H. Discoveries from Sterol analysis in macrophages

Nomenclature and Range of Compounds to Analyze

Nomenclature and Range of Compounds to Analyze



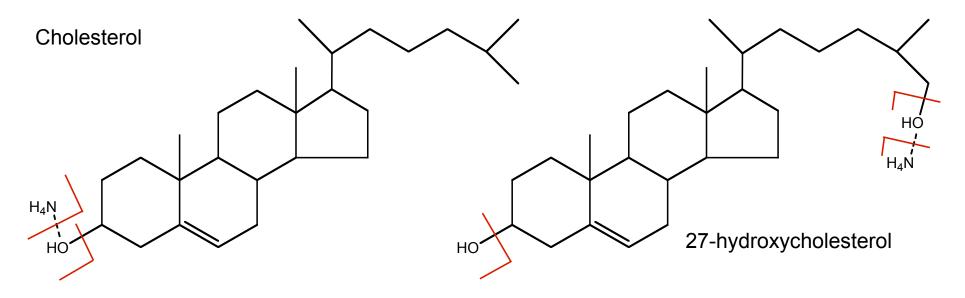
Nomenclature and Range of Compounds to Analyze

 Cholesterol is the dominant species in a sterol analysis

 Sterols can exist in free or esterified forms

 Many sterols are localized in cells only; some are located in medium

Compound identification: HPLC MS/MS; GC/MS

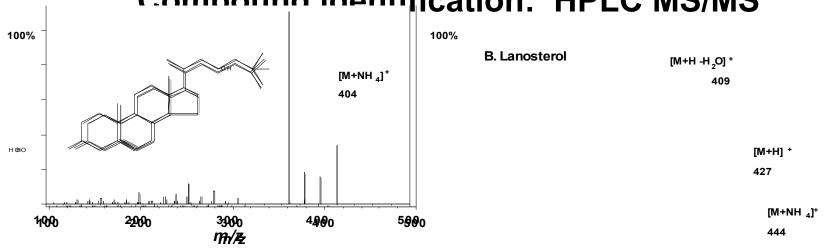

Reverse Phase HPLC

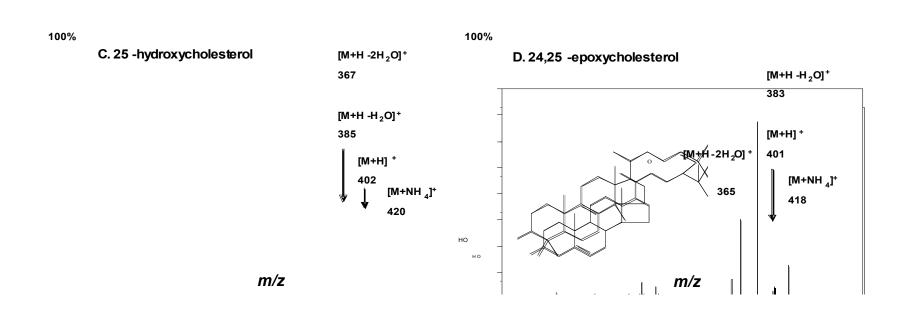
- Phenomenex Luna C₁₈
 - (250 × 2 mm; 3 μ m)
- A: 85% MeOH
 - B: 100% MeOH
 - Both with 5mM NH₄acetate
- 30 °C column temp
- 0.25 mL/min, 1 min 100%A to 100%B 15 min, 100%B 10 min, 100%A 5 min

Mass Spectrometry

- Applied Biosystems 4000QTrap
- TurboV Electrospray Ion Source
- Positive (+) mode
- Multiple Reaction Monitoring
- Optimized collision energy, declustering potential

Compound identification: HPLC MS/MS

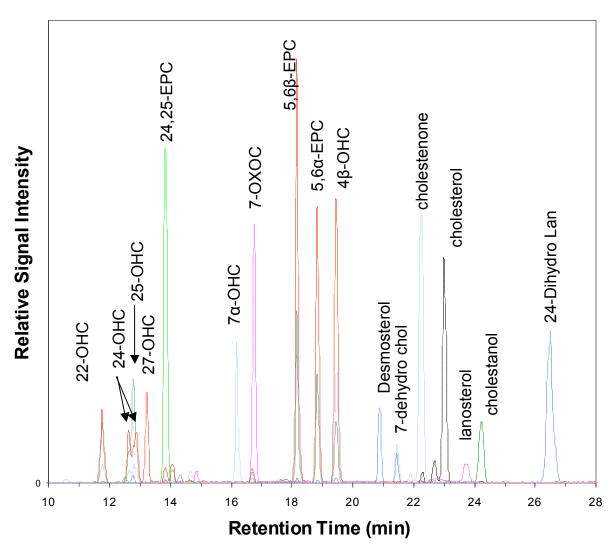

Common Ions Observed by Scan (in-source decay) and Product Ion


$$[M+NH_4]^+$$

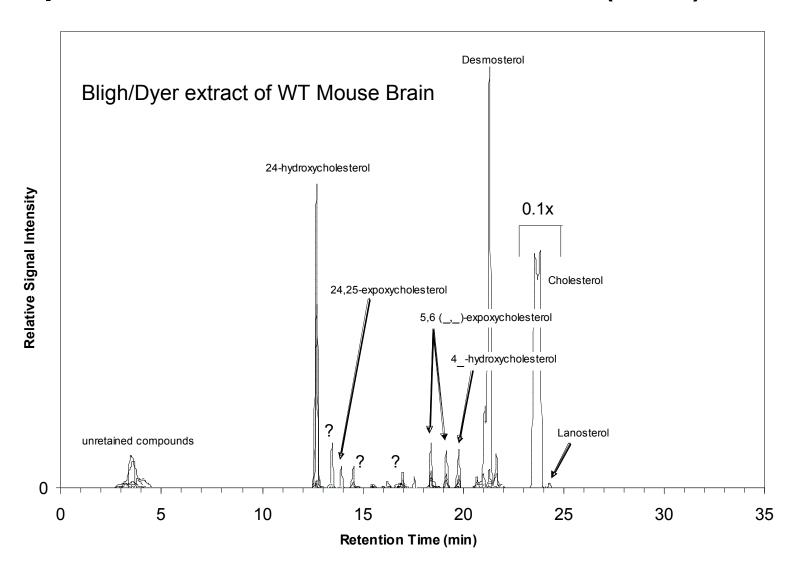
 $[M+NH_4-NH_3]^+$ $(M+H)$
 $[M+H-H_20]^+$
 $[M+NH_4-H_20]^+$?

$$[M+NH_4]^+$$

 $[M+NH_4-NH_3]^+$ $(M+H)$
 $[M+H-H_20]^+$
 $[M+H-2H_20]^+$
 $[M+NH4-H20]^+$?


No abundant disassociation products beyond loss of waters with ESI

Compound identification: HPLC MS/MS (MRM); GC/MS



- Multiple Reaction Monitoring
- Most sterols well-resolved
- Peak widths between ~15 and 20 s FWHM

LOD

- 5-100 fmol on-column for oxysterols
- 200-2000 fmol on-column for sterols

Compound identification: HPLC MS/MS (MRM); GC/MS

Quantitation: Internal standards, etc.

COMMON NAME	MW
22R/S-hydroxycholesterol	402.7
24-hydroxycholesterol(<i>R</i> + <i>S</i>)	402.7
25-hydroxycholesterol	402.7
27-hydroxycholesterol-(25 <i>R</i>)	402.7
24,25-epoxycholesterol	400.6
7α-hydroxycholesterol	402.7
7-ketocholesterol	400.6
5,6α/β-epoxycholesterol	402.7
4β-hydroxycholesterol	402.7
Zymosterol	384.7
Desmosterol	384.7
7-dehydrocholesterol	384.7
Cholestenone	384.7
Lathosterol	386.7
Cholesterol	386.7
Lanosterol	426.7
Cholestanol	388.7
24-dihydrolanosterol	428.7

- Condensed list of sterol standards available from Avanti
- **BOLD** = deuterated analog available
- Avanti Polar Lipid Standards
 - Extensive characterization
 - NMR, LC, MS
 - On-going stability for select compounds
- Additional deuterated and primary standards in progress
- www.avantilipids.com

What Have We Learned in Analyzing Sterols for 5 Years?

A "one-size-fits-all" sterol method has strengths, but also has limitations

Sample Processing

- Cholesterol > 1000x most other sterols (some cases > 20,000x)
 - Requires concentration of final extract; solubility becomes an issue
 - Solubility in MeOH marginal, solubility in MeOH/H₂O poor.

Chromatography

- Coelution of isobaric compounds with HPLC
 - Compound- or class-specific methods

Mass Spectrometry

- Significant spread in signal intensity between similar sterols (ESI)
 - Oxysterols very sensitive, methylated sterols very insensitive
- Matrix interference/ion suppression (ESI)
 - Triglycerides, phospholipids, other abundant lipids
- Native sterols not suitable to precursor ion or neutral loss scanning

Observations on Sample Processing

Base Hydrolysis

- Base hydrolysis necessary for plasma or tissue
 - Generate free sterols from esters
- Eliminates TAGs, phospholipids
- Creates fatty acids, methyl esters
 - Separated by SPE
- Some oxysterols susceptible to high-temperature hydrolysis
 - Room temperature shown to work well
 - Lund et al.

Solid-Phase Extraction

- Used to remove remove bulk cholesterol
 - 24,25-Epoxycholesterol, other sterols elute in wrong fraction
- Silica is a reactive substrate
 - Generate oxysterols?
- Separate all oxysterols from all sterols
 - Lund et al Si SPE with hexane/IPA
 - Griffiths et al uses RP C₁₈ SPE with EtOH and water
 - NH₂ SPE with hexane/ether showing promise in our laboratory

Observations on Chromatography (HPLC)

- Resolving sterols in single run difficult
 - 24- and 25-OHC; Lathosterol and cholesterol
 - Long run times (≥ 30 min)
- Isocratic elution can be helpful
 - DeBarber et al
- Pentafluorobenzyl stationary phases show unique selectivity
 - Complete separation of 24- and 25-OHC
- CN column with hexane:IPA
 - Excellent separation of all oxysterols
 - 3mm diameter columns (more loading capacity)
 - NP with better reproducibility (water)
 - Fast, hexane as dissolution solvent, low viscosity, compatible with APCI, \$
 - · Saldanha et al

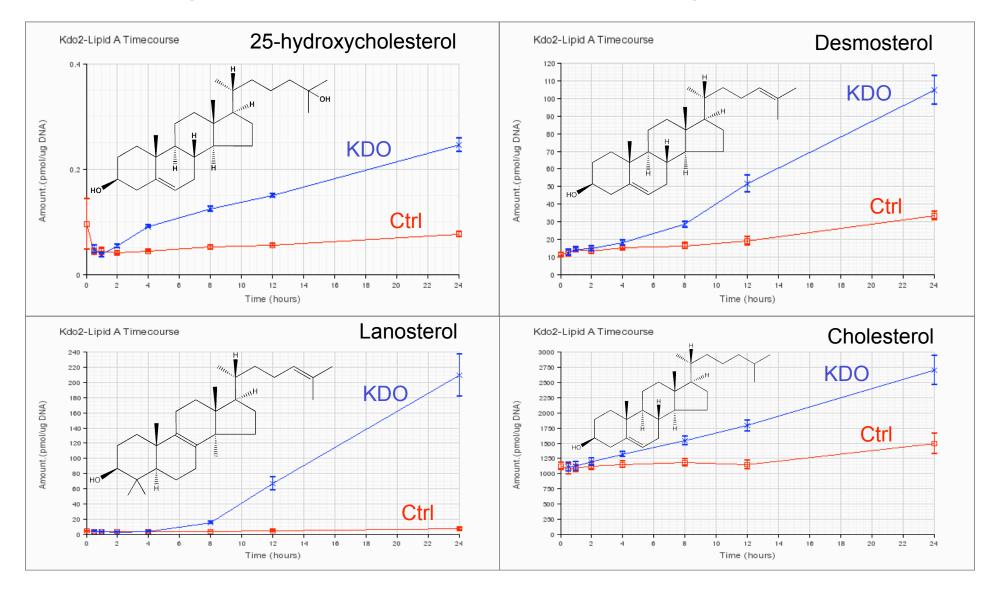
Observations on Chromatography (GC)

- Superior resolution
 - 200K versus 20K theoretical plates
- Sufficient sensitivity for all non oxysterols
- Library matching with scan mode
- Fast run times with H₂ carrier gas
- Requires derivatization with TMS
- Oxysterols require large samples
 - 1 mL plasma
 - Isolation away from cholesterol, other abundant lipids
- 1-2 uL injections require final sample volume of ~100 uL.
 - Must have clean, isolated sample
- GC-MS (EI) is \$70K
 - Short learning curve, low maintenance, implement in almost any lab

Observations on Mass Spectrometry (APCI)

- APCI offers reduced matrix effects/ion suppression
- More uniform response to all sterols
 - Increased detectability of non oxysterols
- Mass sensitive ionization technique
 - ESI is concentration sensitive
- More sample, more signal
- Larger diameter columns, larger injections, reduced sample prep
- Compatible with NP solvents
- Modern instruments
 - AB 5000
 - Scheduled MRMs
 - Biological relevance/sample size

Summary of Advanced Sterol Analysis


Process	Positive	Negative	Comment
base hydrolysis	Cleaner samples	Additional step	Useful for free versus esterified analysis
	Less interference	Can degrade some sterols	
	Higher quality data	Some Sterois	
SPE	Isolate oxysterols	Expense and time	Split sample for GC-
	Remove interferences	Can't separate	and LC-MS analysis
	Cleaner samples	sterols	
GC-MS	Best choice for sterols	Detectability	Can rival LC-MS
	Inexpensive	Limied injection vol.	with reduced cost and complexity
	Ease of use	Derivitization	
HPLC	Normal phase	No single method	Speed
	Alternative phases	provides complete	
	Speed	resolution	
	APCI better suited to	Thermally labile	Dual mode sources
MS	sterols	compounds?	availble

Identification of Novel Sterols

- No precursor, product, or neutral loss scans for native sterols
 - Oxidize 3β OH, derivatize with GP reagent

- Use predicted MRM pairs
 - ~75 MRM pairs covers most logical sterols

Interesting Trends of Sterols in Macrophage Time Courses

